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Abstract

This thesis considers the application of wavelets to problems involving multiple series
of temporal data. Wavelets have proven to be highly effective at extracting frequency
information from data. Their multi-scale nature enables the efficient description of both
transient and long-term signals. Furthermore, only a small number of wavelet coefficients
are needed to describe complicated signals and the wavelet transform is computationally

efficient.

In problems where frequency properties are known to be important, it is proposed that
a modelling approach which attempts to explain the response in terms of a multi-scale
wavelet representation of the explanatory series will be an improvement on standard
regression techniques. The problem with classical regression is that differing frequency
characteristics are not exploited and make the estimates of the model parameters less
stable. The proposed modelling method is presented with application to examples from

seismology and tomography.

In the first part of the thesis, we investigate the use of the non-decimated wavelet transform
in the modelling of data produced from a simulated seismology study. The fact that elastic
waves travel with different velocities in different rock types is exploited and wavelet

models are proposed to avoid the complication of predictions being unstable to small

changes in the input data, that is an inverse problem.

The second part of the thesis uses the non-decimated wavelet transform to model electrical
tomographic data, with the aim of process control. In industrial applications of electrical
tomography, multiple voltages are recorded between electrodes attached to the boundary
of, for example, a pipe. The usual first step of the analysis is then to reconstruct the
conductivity distribution within the pipe. The most commonly used approaches again lead
to inverse problems, and wavelet models are again used here to overcome this difficulty.

We conclude by developing the non-decimated multi-wavelet transform for use in the



modelling processes and investigate the improvements over scalar wavelets.
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Chapter 1

Introduction

1.1 Motivation

The analysis of temporal data can be complicated when the data have properties that make
the application of the usual time series methods such as ARIMA models introduced by
Box and Jenkins (1976) and spectral analysis Priedtley (1981) difficult. An example of
this would be a series lacking stationarity in terms of its mean value or autocovariance
structure over time. Seasonal time series, such as rainfall, are examples of non-stationary

series.

When a process consists of more than one observed time series, the methods for modelling

and investigating the properties get increasingly difficult as the number of series increases.

The idea of a multiscale approach will also prove useful when analysing temporal data
which contains several features, each occurring over different time scales. The example

of analysing environmental data illustrates how this approach may be of benefit. Whilst
climate change might be the cause of temperature increases over decades, season changes
will bring about temperature change throughout the year and consideration of the daily

weather provides a picture at a small scale. The wavelet transform of such a dataset would
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decompose the series into several sub-series, each offering information at a different time

scale.

1.2 Outline of thesis

The thesis begins with an introduction to wavelet methods in Ch@gpter 2. This includes an
overview of the wavelet transform and the performance of some noise estimation methods

is explored.

The new contributions made in this thesis are in developing methods for modelling
situations where signals have changing frequency properties at given points in time, using
wavelet decompositions to transform the underlying signals may allow the frequency
properties to be incorporated into the modelling paradigm. By incorporating what is to
be called a ‘transfer function’, it has been possible to effectively encode the frequency

information.

This thesis considers several situations where the underlying process produces data with
such frequency properties and proposes a framework in each setting to best allow the

properties to be exploited.

Chapter[ B discusses a method of transforming seismic data that allows the varying
frequency properties to be exploited. These are then incorporated into a linear model

to predict acoustic impedance.

Chaptef # applies wavelet methods to tomographic data modelling. The question of how

to incorporate multiple observations into the modelling framework is investigation.

An extension to wavelet theory, known as multiwavelets is explored in Cljgpter 5. Here an
alternative method of incorporating many series into a modelling framework is explored
in the seismic and tomographic settings. An overview of the mathematical background to

multiwavelets can be found in Keingrt (2004).
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The proposed methods could have possible applications in other data settings which
exhibit similar properties. Examples could include the modelling of customer behaviour
modelling in financial services, where higher frequency activity could indicate a change
in behaviour indicative of either cross selling opportunities or customers leaving.
Environmental data, such as wind speeds or rainfall may also exhibit changing frequencies

due to the different weather systems.

1.3 New developments

The thesis develops new methodology to model series with both frequency and
time characteristics through a combination of wavelet methods and existing statistical
modelling techniques such as linear and logistic regression. The models are built using
processed wavelet coefficients and the proposed method of processing, using a transfer

function (described in Secti¢n 3.4), is also a new concept.



Chapter 2

Literature Review

2.1 Introduction

Wavelets are localised basis functions, with some special mathematical properties which
will be mentioned later in sectign 2.4. An analogy for how wavelets work is to think
of a camera lens that allows you to take broad landscape pictures as well as zoom in on

microscopic detail that can’t normally be seen by the human eye.

Many applications of wavelets have been developed over recent years and now the
applications range from Biomedical imaging Van der Ville et al. (2006) and microarray

analysis X.H.Wang et al. (2003) to data fusion Fryzlewicz ét al. (2007).

A usual starting point to explain how wavelets work is to start with the ideas of Fourier
Theory, which represent functions in terms of a series of sine and cosine functions (having

infinite support).
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2.2 Fourier Analysis

It is known from Fourier theory that a signal can be expressed as the sum of a series
of sines and cosines, known as a Fourier expansiom& (1996). However, these
methods fail to provide efficient representations for certain types of functions which have

discontinuities.

Definition 2.2.1 A Fourier series is the representation of a functignin terms of a sum

of sine and cosine functions

Qo

f(z) = o + % Z(an cos(nx) + bnsin(nzx))

where

2m

a, = f(z) cos(nz)dx
/
27

by = / f(@) sin(nz)dz

0

This representation is possible sinfe, cos(nz),sin(nz)} constitutes an orthonormal

basis ofL?([0, 27]).

Sine and cosines functions (sinusoids) are localised in frequency but not in time, thus a
large number of terms are required to represent a function with a discontinuity in terms of
a Fourier series.

Definition 2.2.2 Let< f,g >= [ f(x)g(x)dx denote the inner product of the functions

f andg. The Fourier transform of a functiofi € L!(R) is defined by
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If f € L}(R) is the Fourier transform of € L!(R) then
fla) =T 1f W) = 5= [ Fwlendo

is the inverse Fourier transform.

The disadvantage of a Fourier expansion is that it has only frequency resolution and no
time resolution. This means that although it is possible to determine all the frequencies
present in a signal, it is not possible to know when they are present. To overcome this
problem wavelets can be used. In order to understand how a wavelet decomposition can

be constructed, the concept of a multiresolution analysis will be introduced.

2.3 Multiresolution Analysis

A multiresolution analysis (MRA) provides a framework for examining functions at

different scales. A multiresolution analysis can be defined following Mallat (1989).

Definition 2.3.1 A multiresolution analysis is a chain of nested closed subspaces,

{V;, 7 € Z} satisfying the following conditions:

1. The spaces have trivial intersection:

(Vi = {0}

JET
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2. The union is dense ih?(R):
Uvi=1*®).
JEZ

3. The following scale relations exist:

@) eV, & f(22) € Vi, 2.1)
flx)eVy & f(x—k) eV, keZ. (2.2)

4. There exists a function(z) € 1} such that the sequende(z — k), k € Z} is an

orthonormal basis of/,.

The conditions given in equatiops .1 2.2 imply that., k£ € Z} is an orthonormal
basis ofV,. Sincel, C Vi, the functiong(z) € 1, can be represented as a linear

combination of the functions frof; and so

o) =Y hivV20(2z — k),

kEZ
for some coefficients,, £ € Z, which are often referred to as a low pass filter. The

function¢(x) is called thefather wavelebr scaling function

For each MRA, it is also possible to definerather wavelety (), which will explain
the detail at each levgl Consider the detail spad€; to be the orthogonal complement
of V; in V44, so that

Vinn=V; © W

Then{y(x — k), k € Z} forms an orthonormal basis fd¥),, orthogonal to all functions
in V;. Sincey(z) € Vi, the functiony(z) can similarly be represented as a linear

combination of the functions frori,.

Y(@) = guV20(27 — k),

kEZ
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where the coefficientg,, £ € Z are known as the high pass filter. As a consequence of
the MRA conditions,f(z) € W, < f(2;2) € W; and so{¢;;(x)} is an orthonormal
basis forlV; and so

Yir(w) = 202927z — k), j,k € Z.

2.4 What is a wavelet?

A wavelet is a small localised wave, designed to have attractive properties not enjoyed by

“big waves” such as short support which is not exhibited by the sinusoids.

Wavelets are basis functions which are able to represent a signal in the time and frequency
domain at the same time. They can be used to approximate an underlying trace or signal,
similar to Fourier transforms. The advantages of wavelets are that they are localised in

frequency and time and so can handle a wider range of signals than Fourier analysis.
A disadvantage of wavelets is that the transform obtained only has representations of the
data at a discrete number of resolution levels, each resolution level having a representation

at approximately twice the frequency of the previous level.

A wavelet basis can be formed by translating and dilating a funetiaralled the mother

wavelet.

A mother wavelet may be defined as in Meyer (1992).

Definition 2.4.1 Letm € N. Then forz € R, a functiony:(z) is called a mother wavelet

of orderm if the following properties hold.

1 I1fm = 0,¢(z) € L*(R). If m > 1, theny(z) and all its derivatives up to order
m belong toL>*(R).

2. 1(x) and all its derivatives up to order. decrease rapidly as — +oo.
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3. For eachk € {0,...,m},

o0

/ ¥ (z)dr =0

4. The collection{; s}, ez forms an orthonormal basis df*(R), the ;. being

constructed from the mother wavelet using

bin(r) = 25(2Vx — k).

2.5 Examples of wavelet bases

2.5.1 The Haar basis

Probably the simplest wavelet basis is the Haar basis, constructed from following the

scaling function and mother wavelet. A picture of the Haar basis is shown in Figlre 2.1.

1 x€][0,0.5)

1 z€(0,1)
-1 z€]0.5,1)

0 z¢(0,1)

(r) =

0 otherwise

Haar Mother Wavelet Haar Scaling Function

10

05

-05

-1.0

14

12

10

08

06

Figure 2.1: Picture of the Haar mother wavelet and scaling function.
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2.5.2 The Meyer wavelet

This is thought about in terms of the frequency domain.

(27m)"2 o < 2
Y(x) = (2#)_% cos [gl/ (%|x| — 1)} 2?” < |w| < 4?”
0 otherwise

wherev is a smooth function satisfying:

0 <0
1 z>1

v(z) =

andv(z) + v(1 — x) = 1. The wavelet is of the form:

b(@) = Vare [9(e +2m) + 6w — 2m)]6 (5

2.5.3 Daubechies wavelets

Daubechies| (1992) introduced two families of compactly supported wavelets, with

different possible degrees of smoothness. These are known as Dauleti@esl phase

and least asymmetrigvavelets. A useful property of compactly supported wavelets is
that the associated filtef€ and G, which will be explained in Sectign 2.6, have a finite

number of coefficients. More details of the construction of these wavelets can be found

in [Daubechies/ (1992) and some examples of Daubechies compactly supported mother

wavelets are shown in Figure 2.2.

Further details of different wavelet bases can be found in Vidakovic (1999) and Percival

and Walden[(2000).
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Extremal Phase (N=2) Least Asymmetric (N=4)
o = -
= o = ]
E ES g -
D 1 p—
- 7] =N
| | | | | i | | | | | |
10 056 00O 05 10 15 056 00 05 10 15 20
X X
Extremal Phase (N=10) Least Asymmetric (N=8)
Lo L
o =
o _|
= 2 = =
ES ES ]
L
= =]
= ]
i T T T T T 1 T I I T
4 3 2 100 1 2 3 1 0 1 2
L ki

Figure 2.2: Examples of Daubechies compactly supported mother wavelets.
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2.6 The discrete wavelet transform

The discrete wavelet transform (DWT), proposed by Mallat (1989), is an efficient
algorithm for calculating the wavelet coefficients of a discrete series. The idea is to filter
the series, using the high and low pass filters associated with the wavelet basis to obtain

the wavelet coefficients.

The transform can be explained in terms of a low pass fitte= {h;} and a high pass
filter G = {gx}, where they, andg;, are the coefficients of the filters referred to in Section

2.3.

Consider a functiorf observed atv = 27 equally spaced time poin{g;,i = 0,... N —
1}. Letey; = f(t;) fori = 0,...,N — 1. The discrete wavelet transform of the series

can be obtained using the relations:

Ci—14 = Zhn—2icj,n (2.3)

dj—1; = Zgn—%cj,n (2.4)

The resulting wavelet transform is the collection of the detail coefficients at each level
together with the smooth or father coefficient at the zero level. This is an orthogonally
transformed representation of the original series of ledgthThe 2i term in equations

[2.3 and 2.} is an alternative way of representing the decimation step of the DWT. It is
equivalent to filtering using{ andS and then applying even dyadic decimation (selecting

every even observation from the series).

An alternative way to formulate the DWT is to construct an orthogonal malix
associated with the particular wavelet basis being used. The DWT can then be defined
as the matrix multiplication of this orthogonal matrix with a vector of observation points,
x. That is,

d = Wx,
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whered is a vector comprising of both the discrete mother and father wavelet coefficients.

2.6.1 Example of the DWT

Suppose we have a four element sequence
(02,0, C2,1, C2,2, 0273) = (4,12,6,24)

and we want to find the wavelet decomposition using the Haar basis. The filters for the

Haar basis are

H = (ho, h1) = (1/\/57 1/\/§)a 5=1(9.,91) = (1/\/57 _1/\/5)-

Using Equation§ 2|3 and 2.4, we obtain
co = 1/V2x4+1/V2x12=28V2
o= 1/V2x6+1/V2x24=15V2
dig = 1/V2x4—-1/V2x12=—4V2
diy = 1/V2x6—-1/vV2x24=—-9V2

At the next resolution level, the coefficients are

oo = 1/V2x8/2+1/V2x15v/2 =23
doo = 1/V2x8V/2—-1/V2x15V2=—T.

It is possible to reconstruct the original series from the coefficiénts do o, d1.0. d1.1)

using the inverse DWT.

2.6.2 Boundary conditions and wavelets on the interval

The Haar wavelet has very short filters, but for other bases, a problem may occur when the

filters are longer than the input series. Several solutions exist to this problem: the series
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could be considered to repeat periodically; padding with zeroes could increase the length
of the series; polynomial extrapolation could be used. Nason and Silverman (1994) give

more details on the options available.

Meyer (1991) showed how an orthonormal family of wavelet®in| can be constructed

from any compactly supported wavelet basis of Daubechies (1988). The resulting basis
has the same number of vanishing moments and the same regularity as the original mother
wavelet. An orthonormal basis fé? ([0, 1]) can be formed from these functions, together
with the father wavelets as the coarsest scale. Constructing wavelets on the interval in this
way has the disadvantage that in the explicit construction involves diagonalisation of a

matrix and becomes ill conditioned (Cohen et/al., 1993).

Cohen et al. (1993) proposed a modification in which the resulting wavelets are derived
from the minimal compactly supported wavelet feér More recently| Melkemi and
Mokhtari (2007) have developed a general method to construct wavelet bases on an

interval with arbitrary support.

2.7 Inverse wavelet transform

When the wavelet transform is thought of as a matrix multiplication, it is easy to see
that the orthogonal matri3 can be inverted and so the inverse transform can be
found. Computationally, the inverse transform takes the coarsest level father and mother
coefficients and uses them to reconstruct the next finer level. Mathematically this can be

written as

Cijk = E hi—acj—1; + E Gre—21dj—1.
I 1

The reconstruction can then be achieved by iterating this process and climbing the

resolution levels back to the original data.
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2.8 Non-decimated wavelet transform

The first application of the non-decimated (or stationary) wavelet transform (NDWT)
to statistical problems was by Nason and Silverman (1995). To compute the NDWT,
appropriate high and low pass filters are applied to the data at each level to produce two
sequences at the next level. No decimation occurs in this transform, so the two sequences
have the same length as the original sequence. Instead, the filters are modified at each

level, by padding out with zeroes.

2.8.1 Setup

Define Operators
1. Let Z be an operator which alternates a given sequence with zeroes, so that
Vj e Z,(Zx)y; = x; and (Zx)j41 =0
2. Let 8 be the shift operator defined by
(82); = i
3. Let Dy be the binary decimation operator defined by

(Doz); = w2

Define filters

DefinedH"! andSGl"! to have weight&”h andZ” g respectively. Thus the filtek("! has the

weightsh, = h; andhg] = 0if k£ is not a multiple of2".

273
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So K"l is obtained by inserting a zero between every adjacent pair of elements of the

filter 7", and similarly forgl"!.
= K andgl" commute withs

= DK = 3Dy and DG = D

Defining the NDWT

Leta’ be asequence. For=J, J—1,...,1definea’ ' = H/~lad and/—t = Gl/—7la7,

If a’ is of length2”, then all the vectorg’ and ¥’ will be of the same length, rather
than becoming shorter gsdecreases as in the standard DWT. This means that to find
b/ v 720 b0 a® will take O(J27) operations rather thafi(27) as in the decimated

DWT.

2.8.2 Example of the NDWT

Recalling the example from Sectipn 2]6.1, we now find the non-decimated version of the
wavelet transform for this series. To allow the effect on the filters to be seen, dot product

notation is used.

The scaling coefficient§c; ; } are found using periodic boundary conditions from the

following relationships.

co = ( ) - ( )
car = )~ ( )
c1a = (ho,h1) - (c22,c23)

(ho, ha) - ( )

13 =
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The mother wavelet coefficients can be found similarly using the high pass §ilter,

(90, g1), instead of the low pass.

At the next level, the filters need to padded with alternate zeros before calculating the

coefficients, and so the next level can be calculated as follows.

o0 = (0,0, hy,0) - (01,07 €1,1,C1,2, 01,3)
Co,1 = (ho, 0, hy, 0) : (01,1, C1,2,C1,3, Cl,o)
coz = (ho,0,h1,0) (c12,¢13,C10,C11)
co3 = (ho,0,h1,0)- (c13,¢10,C11,C12)

2.8.3 Numerical example

If we have a sequence similar to the example in Segtion]2.6.1, the NDWT would be

calculated as (using the Haar basis):

(02,0, C2.1,C2.2, 02,3) = (47 12,6, 24)

clo = (%,%)-(4,12):8\@
- (%,%)-(12,6):9\@
Cly = (%,%)-(6,24):15\/5
Gy = (%,%)-(24,4):14\/5
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The next level of coefficients can then be found.

oo = (%,0,%,0)'(8\/5,9\/5,15\/5,14\/5):23
o1 = (%,O,%,O)-(9\/5,15\/5,14\/5,8\/5):23
Con = (%,0,%,0)-(15\/5,14\/5,8\/5,9\/5):23
Cos = (%,0,%,0)-( 4V/'2,8V2,9v2,15V/2) = 23,

2.8.4 Relation with the DWT

The stationary wavelet transform contains all the coefficients of the decimated wavelet
transform. The stationary wavelet transform fills in the gaps’ between the coefficients in
a decimated DWT and so there is no longer any restriction of the localization position to

a grid of integers.

2.8.5 Example of the NDWT as an exploratory method

In this example, the Doppler test signal (Figfire| 2.3(a)), as discussed in Sectign 2.9.3 is

used. This signal has varying frequency, from high to low along the time axis.

The standard wavelet transform of this signal (Figure 2.3(b)) shows this at the finer
resolution levels. The stationary wavelet transform, shown in Figure 2.3(c), also
highlights the decreasing frequency. Asincreases, the amplitude of the oscillation

within the higher frequency levels decreases.
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Figure 2.3: Wavelet decompositions of the Doppler test signal using the Daubechies

extremal phase wavelet with 2 vanishing moments.
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2.9 Thresholding

Wavelet methods are often used in the non-parametric regression setting, where the

problem is of the form:

yi = g(t:) + €

wheret; = (i — 1)/N,i=1,..., N ande; X N(0, 02).

How can we recover the functioj from the datay; without assuming any particular
parametric structure fay? One answer, introduced py Donoho and Johnstone (1994), is

through wavelet thresholding.

The process involved in thresholding is to take the wavelet decomposition of the data
{y;}. An attempt is then made to identify which of the wavelet coefficients obtained are

representing noise and these coefficients are modified according to a thresholding rule in
an attempt to remove the noise from the signal. Finally, the inverse wavelet transform is

applied to the modified coefficients to obtain an estimatg of

2.9.1 Hard and soft thresholding

Hard thresholding rules transform all the coefficients regarded as negligible (i.e., those
satisfying|d;;| < X ) to O, keeping all other coefficients at their original value. The

thresholding rule is expressed as:

dji. = d (ldjk‘ > )

Soft thresholding rules transform some of the smaller coefficients to 0, and translates the

rest towards 0. It is easily expressed by the following equation:

—~

djr, = sgn(d}y,) max(0, |dy| — A)
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Hard threshold is a ‘keep or kill' procedure and is more intuitively appealing. The
alternative, soft thresholding, shrinks coefficients above the threshold in absolute
value. While at first sight hard thresholding may seem to be natural, the continuity
of soft thresholding has some advantages, one of which is that it makes algorithms
mathematically more tractablé (Donoho and Johnstone, |1995). Sometimes, pure
noise coefficients may pass the hard threshold and appear as ‘blips’ in the output.
Soft thresholding shrinks these false structures. In terms of image de-noising, hard
thresholding maintains the sharp edges of the image, whereas soft thresholding tends
to blur the image. However, soft thresholding does usually result in reconstructions with

lower mean squared error.
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Figure 2.4: Comparison of hard and soft thresholding.

There are alternatives to hard and soft thresholding in the form of localised, context-

based thresholding. Ghazel et al. (2005) show that the performance of thresholding can
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be improved using such techniques.

2.9.2 How do you choose a threshold?

Many different schemes have been proposed for choosing the thresh@b8ramovich
et al| (2000) and Vidakovic (1999) give a review of some of these. We give a brief

description of some of the standard thresholding rules.

Universal thresholding

The universal threshold was proposed by Donoho and Johnstone (1994). It is given by

Auniversal= oV 2log N,

where the value of will usually be unknown and therefore estimated from the data.

BayesThresh

The BayesThresh method (Abramovich et al., 1998) tries to estimate the ‘large’
coefficients and set the others equal to zero. This is achieved by assuming that the wavelet
coefficients,;, have the following prior distribution:

di ~ mNO,73) + (1-;)5(0) (2.5)
where0 < 7; < 1, 6(0) is a point mass dt and thed;,,’s are independent.

The model is specified in terms of the hyperparameteasd =, with these parameters
themselves having the following representation in terms of two user selected inputs,
andg:

T»2 = 2_aj01

m; = min(], 27PiCy)
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whereC; and(, are constants chosen empirically from the data.

Abramovich et al.[(1998) show that the choicesaofnd 3 are equivalent to selecting
particular prior distribution to incorporate prior knowledge about the smoothness of the
underlying function.[ Chipman and Wolfson (1999) also discuss the interpretation of

andg.

The implementation of the BayesThresh method (Barber|et al.,| 2002) specifies the prior
model in terms of the parametexsand 3, calculating the constants, andCs, from the

data.

The prior specification then assumes a non-informative prior for the scaling coefficient
co,0, Which has the posterior distributiaN (cj o, o), and is estimated by the observed

valuecy ;.

The resulting posterior distribution af; given an observed value df, is independent

for eachjk and is given by

djk|d;k ~ ijN(d;kTJQ'a ‘727"]2‘) + (1 = w;)é(0)

wherew;, = 1/(1 — £;;,) with

2 2
\/Ti+o — T2
1—7Tj J T]djk

= ex
Eon M o P 202(72 + 02)

2 _ . 2/(2 | 2
andr? = 77/(0% +77).

SURE

This method of estimating the threshold was proposed by Donoho and Johnstorie (1995)
and is based upon the minimisation of Stein’s unbiased risk estimator. The wavelet

coefficients at each level are considered separately as independent multivariate normal
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estimation problems. Stein (1981) showed that an unbiased estimator of the risk is

N N
SURE(\;, dj) = N = 2> 1 (|dj] < X)) + > min(|dje|, A)?

k=1 k=1

and so the SURE threshold can be written as

Ajsure= argming<y < sz v SUREN;, djk).

2.9.3 Estimating the noise standard deviationy

There are several competing methods of estimating the noise standard deviation for use
in calculating the universal threshold. Donoho and Johnistone [(1994) suggestctat

be estimated using the median absolute deviation of the finest level wavelet coefficients
divided by 0.6745. This constant is the median of the absolute values of a standard normal

variable and so makes the estimate unbiased under the assumdption,~ N (0, 1).

. median[|[d”"" —median (dV"V) ]
“mad™ 0.6745

An alternative method for estimating is using the sample standard deviation of the

wavelets at the finest resolution level.

1 _ - (J—
am L

2

2

A small simulation study was carried out to investigate the appropriateness of these two

methods.

Comparison of different noise estimation methods

Simulations were carried out with 100 repetitions of 100 values of signal to noise ratio,

ranging from 0.1 to 1, corresponding to noise standard deviatior).1. The signal to
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Figure 2.5: The test signalsof Donoho and Johnstone {1994).

noise ratio is defined as the reciprocal of the noise standard deviation and in the simulation
a signal to noise ratio of 1 corresponds to equal strength of noise and signal. The test
signals of Donoho and Johnstone (1994) (see figure 2.5) were used with l€éRdth-

210,

Various factors which could influence the quality of the noise standard deviation estimate

were identified. These were:

e The form of the estimate used. Here the MAD and the standard deviation of the

wavelet coefficients are compared.
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e The test signal itself: a discontinuous signal with relatively large jumps may cause
the noise standard deviation to be overestimated; a high frequency signal may make
the noise estimation difficult if it results in coefficients representing signal at the

finer resolution level.
e The signal to noise ratio.

e The wavelet transform used — decimated and non-decimated transforms are

investigated.
e The wavelet filter used.

e The resolution level of the wavelet coefficients used in the noise estimation.

To investigate the effect of filter choice, several different filters were used, but the noise

estimation appeared robust to the actual filter. For this reason, only the results using
the Daubechies Extremal Phase basis with 10 vanishing moments are reported. The
estimates using the finest resolution level coefficients are considered, as noise will be

more prominent at the finer resolution levels.

The results for the signal to noise ratio of 0.1 are shown in Table 2.1. This shows that
the standard deviation estimate performs better than the MAD estimate for all signals and
signal to noise ratios. The biggest differences are observed in the doppler signal when

using the decimated transform and the heavi signal for the non-decimated transform.

Figure[2.6 shows examples of how the AMSE varies depending upon the SNR for these
two signals. It can be seen that the standard deviation method for noise estimation appears

to consistently outperform the MAD estimate.
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Test Signal
Blocks | Bumps| Heavi | Doppler
MAD AMSE | 0.254 | 0.254 | 0.285| 0.226
SD AMSE | 0.101 | 0.101 | 0.001| 0.087
MAD AMSE | 0.191 | 0.210 | 0.191| 0.230
SD AMSE | 0.099 | 0.095 | 0.093| 0.100

DWT

NDWT

Table 2.1: Average mean squared error of the noise estimates using the different methods.
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Figure 2.6: AMSE of noise estimates for different signal to noise ratios.
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Chapter 3

Modelling Seismic Data

3.1 Introduction

3.1.1 Seismic methodology

Seismic methods are used in the geophysical sciences to explore the composition of
underlying rock. These methods utilise the fact that elastic waves travel with different
velocities in different rock types, depending on the density of the rock. There are a broad
range of seismic applications — ranging from building site investigations and surface
environmental studies, to oil and gas exploration, even to detection of water-bearing

fracture zones and long-period earthquake seismology.

A reflection seismic setup is considered, as shown in Figuie 3.1. The data images in

this situation consist of adjacent time series indicating the arrival of sound waves at the

geophones, which have been artificially generated from a source, such as a controlled
explosion or a sledge hammer. These waves will have been reflected from the interfaces
between rock formations with differing physical properties. A key property is the density

of the rock through which the sound waves have travelled and this is the property we shall
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concentrate on modelling. These traces will provide some insight into the underground
structure, with strong reflection events indicating boundaries between rock formations.
Some simulated data of this setup will be used in Se¢tion|3.3.1 to build a model to predict

the underground composition from such traces.

RECEIVERS
OR
SOURCE GEOPHONES

> AVAVAVAVAVAVAVAVAVAV

ROCK TYPEI

ROCK TYPE Il

ROCK TYPEI \

Figure 3.1: Example of reflection seismic setup.

Estimation of the rock density from seismic data often results in an inverse problem,
where the solution is unstable to small changes in the data. It is expected that the use of
wavelet methods will prove to be useful in avoiding such problems and provide a more
reliable rock density reconstruction. See Stein and Wysession |(2002) for more details

relating to seismic methods.

3.1.2 Properties of the observed signals

There are two main ways in which the composition of underground rock can vary. These

can be described as either smooth or sharp changes.

e Smooth changes— associated with processes such as compaction, which will

produce natural variation in the signal within a rock type. These would represent
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low frequency changes in the rock properties.

e Sharp changes- these usually occur as the depth of observation is increasing, that
is in the vertical direction, and are associated with changes in rock type. The sharp
changes in features are what give rise to the reflections and diffractions that are
observable in seismic traces. At a sharp change point, the rock properties would

change with a higher frequency.

As each of these component changes will be inherent in a seismic trace dataset, the
associated seismic traces will have both low and high frequency properties varying over
time. Itis hope that through the use of wavelet methods, these can be exploited to improve

the estimation of the underground lithology.

3.2 Data simulation

3.2.1 Overview

The simulated data was produced from the starting point of a supposed ‘known truth’
about the geological makeup of an area. This was then convolved with the Ricker
transform, which is defined in Sectipn 3]2.2, and a noise process introduced into the

observations.

The ‘*known truth’ was a256 x 256) dataset, consisting of 256 different observation
points along a straight line on the surface. From each of these observation points, the
sound trace was recorded over time, representing depth below the point, for 256 time
points. A diagram to show the setup is shown in Fiduré 3.2. We assume there are two
clear boundaries dividing rock of differing densities. The pattern is less clear from the
simulated data and there is no simple way to map the observations to give an interpretable

‘truth’.



Chapter 3. Modelling Seismic Data 32

An diagram to illustrate the various stages of the data simulation process can be seen in

Figure3.3.

surFace 1 2 see 225 256

\V
A

\Vj
\/
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C
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Figure 3.2: Diagram of the simulation setup.

3.2.2 A model for seismic data

A common model used in seismology is that of stacked layers of differing rock types, each

with a characteristic density and acoustic velocity. The acoustic impedance, denoted by
Z, of the substance is modelled as the product of this characteristic density and acoustic
velocity. It is further assumed that different substances carry signals at a characteristic

frequency, proportional to the acoustic impedance. The acoustic impedance is given by
Z=pV +e (3.1)
wherep is density,V is the acoustic velocity of the material ands an error term.

Where there is an interface of different materials, the reflected and refracted amplitudes

can be found using a simple expression. The reflection coefficiemglates incident
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Figure 3.3: Data simulation process.

and reflected trace amplitudes measured in units of pressure. This reflection coefficient is
found using the following equation

Zy — 2y
CcC =
Zy+ 2y

whereZ; andZ, are the acoustic impedances for layer 1 and 2 respectively.

The model of recorded seismic data is built by the product of a waveform, which is
often taken to be the Ricker or Mexican hat wavelet, with the reflection coefficient series
(Robinson and Treitel, 1980). The series of reflection coefficients represents the depth
reflections of the material, in the sense that the series will have a spike when the boundary

of two substances is reached.

The Ricker wavelet is defined as the second derivative of a Gaussian distribution with zero
mean and variance/72, wherer is related to the dominant frequency of the wavelet. This

can be written as
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3.2.3 The discrete convolution model

The discrete convolution modeél (Robinson and Treitel, 1980) can be written as
X=YQc+v

where X represents the seismic datayepresents a convolution aads Gaussian white

noise.

Inherent in the calculation of the acoustic impedang¢és an error structure determined
by the nature of the term from equatiof 3]1. As the true valuesbare assumed to be
known, this error is usually modelled directly as an additive error termihe structure

of the noise termv can be broken down into two components:
V = Ve + Vun (3.2)

The first componenty..,., represents correlated noise of a frequency proportional to the
acoustic impedance of the material, which is considered in Sectiorj 3.2.4. The second

componenty,,,, is white noise representing measurement error.

To illustrate the simulation process, figlire|3.4 shows the simulationmjth= 0 and
Vun ~ N(0,0?), with ¢ = 1. Figure[3.5 shows the simulation withas described in
equatior] 3.2, adding correlated and white noise to the acoustic impedance values. This

simulation process was repeated 256 times to obtain a two dimensional simulated dataset.

Comparing Figuref 3.4 ad B.5, it can be seen that when correlated noise is added (as
generated in Sectign 3.2.4), the underlying structure of the reflectivity coefficients and

hence the synthetic trace become much more erratic.
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Figure 3.4: (a) Acoustic impedance, (b) Reflection coefficient, (c) Synthetic trace.

3.2.4 Non Gaussian noise processes
Motivation

Noise of a Gaussian nature as considered in seftion]| 3.2.3 is a common simplification
used when studying seismic processes. It is often assumed that the correlation effects
of the signal will be minimal compared to the underlying signal. Zerva and Zhang
(1997) have noted that the correlation of the noise process will be affected by the true
composition of the underlying rock. For this reason, it is proposed that a noise process
with correlation varying with the acoustic impedance of the rock would more accurately
simulate a real process. To introduce a varying correlation in the noise process the model,
the noise process was simulated from an auto normal process as descrtibed in Aykroyd
et all (1996). This process will introduce horizontal as well as vertical correlation into the

data simulation process.

A first order neighbourhood will be used in the simulation, which is where the neighbours

of the site; are the four orthogonally adjacent sites, as in Table 3.1.
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Figure 3.5: (a) Acoustic impedance, (b) Reflection coefficient, (c) Synthetic trace.

Table 3.1: First order neighbourhood.

Let S be the set of neighbours of point. The auto normal model can now be generated
under the assumption that the probability structure at the pgirdepends only on
contributions from the neighbouring sites. The noise simulation will sample from an
auto Normal distribution, meaning that the parameters of the distribution sampied at

will depend on the values at each of its neighbours.in

The underlying truth in the following simulations is a sequence of measurements taken at
256 adjacent points along a surface line, each recording 256 time points. All of the traces
have a similar structure to that shown in Figurg 3.6 (a). The data set is therefore a matrix
Z with 256 rows and 256 columns. This truth was then corrupted by auto normal noise

generated via a Gibbs sampler.
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Gibbs sampler

Gibbs sampling is an MCMC method which uses an iterative approach to sampling from
a probability distribution. The scheme in this case, with periodic boundary conditions and

a first order neighbourhood, can be described as:

e Pick a starting matri¥d.q. o= = (29,29, ..., 25)-
e Simulate a new value for each pixel from the conditional distributions, such as

1 0 70 0 70
Zy, fromp(Zi,|Z3 4,29 956, Z3 1, Zyss 1)

1 0 70 70 70
Zy, fromp(Zi2|Z5 5,75 ,Zs 5, Zisg )

e The matrix is updated using similar conditional distribution for all possible vertical
sweeps followed by a full set of horizontal sweeps to produce one full iteration to
Z'. The conditional distribution in each case will be:

For vertical sweeps,

Z.*! from p(Z,,| 25|, Z!

t t
Y l’,y—l’ I,y-‘rl’ ZI+17y7 Zx_17y>

and for horizontal sweeps,

Zt+1 Zt

x71g>

Z. from p(Z,,| 2L, |, Z!

Y wvyfl’ mvy+1’ $+17y7

where the values afr — 1), (y — 1), (y + 1) and(x + 1) are given in mod 256 to

enforce periodic boundary conditions.

Since the distribution is Auto Normal,
Zy|Zs ~ N(a,bo?)

wherea = Z;, b ando are constants set equal to 1 in the simulation.
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A set of 256 vertical sweeps followed by 256 horizontal sweeps will complete the

transition fromZ°? — Z!.

This is repeated for an initial ‘burn-in’ period, in this case chosen to be 50 iterations,
with the originali = 1,...,49 values forZ’ being discarded. The convergence of the
simulation was monitored over the iterations to ensure a sensible estimate for the acoustic
impedance truth was obtained. Further details on convergence can be found in Green and
Han (1992).

3.2.5 Diagnostics of simulated data

Figure[3.6(a) shows a sample acoustic impedance series with auto normal noise added as
described in Sectidn 3.2.4 above. Figurg 3.6(b) is the wavelet decomposition of this series
and shows that there is different activity in the central region of the Depth detectable at

resolution levels 4,5 and 6.

This data will then be input into the deconvolution model to create a set of example

recorded traces, which can then be used in the model building process.

3.3 Modelling method

3.3.1 Modelling framework

The data contains a noise process with varying frequency properties and so a wavelet
approach will be used to model the known truth. This will then be applied to data with a
different structure to test the models predictive power and to assess if the model is over
fitted.

The underlying signal is a time series of 256 observations of a synthetic trace. It is also
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Figure 3.6: (a) Example of simulated acoustic impedance trace and (b) its wavelet

decomposition using the NDWT DaubEXx(2).

assumed that the underlying truth is known for one of the traces, practically this could be
obtained by digging a bore hole down, after observing the trace. The initial modelling

framework is:

¢ take the wavelet decomposition of the synthetic trace using a wavelet basis with
short support, here the Daubechies Extremal Phase basis with 2 vanishing moments

is used.

e pre-process the wavelet coefficients using some suitable functiontrahsfer

function which will be explained further in Sectipn 3.4.

e build a linear regression model using the known acoustic impedance truth as
the dependent variable, with the processed wavelet coefficients as explanatory

variables.
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Figure 3.7: Overview of the modelling process.

3.3.2 Prediction

The model can now be used to predict the values of the true acoustic impedance from the
realisations of the synthetic trace. For each predicted poitip@l — «)% confidence

interval for the fitted value will be given by

Z — t(%m—?) X sefip < 7z < Z + t(%’n_g) X Serit

wheret(%,n,g) is the Sth quantile of the distribution with(n — 2) degrees of freedom,
is the number of observations and;, is the standard error of the fit. This will produce a

point wise confidence interval.

As shown in Figuré 3]4, the synthetic trace is the final result of a multi-stage simulation

process, which starts with the acoustic impedance, then adds a correlated noise process,
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the reflectivity coefficients are then found and finally the trace is obtained after

convolution with a Ricker function.

3.3.3 Deconvolution

The convolution in the data simulation process in effect takes a snapshot of the data at
one particular frequency, that of the Ricker function used in the convolution step. This
is in effect destroying the multi-frequency nature of the data that it was hoped the model
would exploit. To reconstruct some of this information, an attempt to deconvolve the data

was made.

The method for the deconvolution was to undo the convolution using a best guess at the
actual filter frequency. The actual frequency used in the data simulation was 50 Hz. A
range of filter frequencies was investigated and the effects on the reflectivity coefficients
and then the resulting predictions are shown in Figure 3.8. The graphs show that the error
in the prediction from the model is flat across all the frequencies investigated. This means
that the model is relatively robust to the gaps in the knowledge about the convolution
frequency and an estimate of this frequency will prove adequate. It can also be seen from
the graph that the errors in the reflectivity coefficients is at a comparable level if your

guess at the actual frequency is withi20Hz of the true frequency.

In practice, estimating the frequency of the deconvolution filter should not pose a problem
since this should be known from the initial experimental setup and the apparatus used.
However, for use in data processing without the knowledge of the exact frequency

originally used, the modelling methods are robust to the choice of deconvolution filter.

Accuracy of reconstructing the reflectivity coefficients

The black circular points in Figufe 3.8 show the average mean squared error (AMSE) of

the reconstructions over 256 realisations. The frequency of the Ricker wavelet used in the
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Figure 3.8: Comparison of the errors for unknown filter frequency.

simulation process was 50 Hz, and so the range of investigation was extended to 20 to 80
Hz. The AMSE can be seen to be minimised when the deconvolution filter frequency was

also 50Hz, where a perfect reconstruction was possible.

To investigate how the final reconstructions are affected by error in the deconcolution
frequency, the running median transfer function was used to build a wavelet model, this
choice will be explained in Sectign 3.4. The triangular points show the AMSE of the
acoustic impedance reconstructions using the regression model. It can be seen that the
deconvolution filter frequency has little effect on the predictive success of the model when

the value used is withia=20Hz of the true value. Outside this range, as the goal of the
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model is to minimise the reconstruction error, it would appear that ‘guessing’ a lower

value for the filter frequency would give better results.

Effect of deconvolution on prediction

After deconvolving the data, the error in the prediction is decreased with the mean squared

error of reconstruction reducing from 4.32 to 2.34.

It appears as though undergoing some sort of deconvolution process, regardless of the
frequency of the filter used, reinstated some of the localised behaviour and frequency
shifts that it was hoped the wavelet modelling approach would be able to exploit.
The results from the previous section suggest that knowing the precise frequency for
deconvolution is not essential, therefore it is possible to deconvolve initially in practise

when the true frequency is not known.

(a) (b)
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Figure 3.9: Reconstructions using: (a) the raw data; (b) a deconvolved version of the data.
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3.4 Transfer function choice

The wavelet coefficients require some pre-processing in order to exploit the desired
properties of the data. This is achieved by applying a transfer function to the wavelet

coefficients before the model building stage. The transfer function will:

be specific to the particular setting and nature of the data.

be related to the structure observed in the wavelet decomposition.

encode the features of interest.

identify these characteristics with the response variable.

There will be many possible choices for the transfer function and it is possible that

alternatives will produce vastly different results.

3.4.1 Suggested transfer functions

There are several possible transfer functions which could be used. Some of these are:

Identity function, that is using the raw coefficien{d,; }.

Moving average of the wavelet coefficients of lengthhat is

1 a
- E djr where k* = (k+ 1 — ) mod256.
a

=1

Running median with window that is

median(d;, ..., d;) Wwith £* as defined above.

Absolute value {|d;x|}.
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There are other signal filters in the literature that could be used in this time-domain
setting. An example of such a filter is the Butterworth filter (Butterworth, 1930) which is
designed to have a frequency response which is as flat as possible. Another example is
the Chebyshev filter which minimises the error between the idealised filter characteristics
and the actual over the range of the filter. Further details can be found in Williams and

Taylor (1995) and Oppenheim and Schafer (1999).

3.4.2 Diagnostics of data to motivate transfer function

Figure[3.10 shows the observable patterns in the wavelet coefficients for each of the
different transfer functions suggested in Secfion 3.4.1. From these initial plots it can
be seen that, at resolution levels 3,4 and 5, all of the resulting coefficients pick up the
differences in the trace in the central region of the Time dimension, where the acoustic
impedance is higher. At the finer resolution levels, the difference is less noticeable.
Looking at Figur¢ 3.7]0 (c), a reduction in the magnitude of the coefficients in this central

region is more observable than with the other suggested transfer functions.

3.5 Application of the proposed method

The modelling method described in sectjon 3.3.1 was applied to the simulated data set.
The reconstruction was compared after using several choices of transfer function and the

results are shown in figufe 3]11.

3.5.1 Sample reconstructions

The running median transfer function was chosen for the seismic model due to the

better performance of the resulting model in terms of the mean squared error of the
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Figure 3.10: Plots of the transformed wavelet coefficients: (a) Identity, (b) Moving

average with window 5, (c) Running median with window 5 and (d)Absolute value.

reconstructions. The resulting reconstructions of other transfer functions can be seen

below in Tablé 3.P.

3.5.2 Application to different simulated data

All of the datasets used so far have been a simple set up with the acoustic impedance

starting low for 80 time points, getting high for a period of 125 time points, before

returning to the initial low value. It was originally assumed that the cross section along
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Figure 3.11: Reconstruction using different transfer functions: (a) Identity, (b)Moving

average, (c)Running median and (d)Absolute value.

the line of interest would have a uniform configuration of rock types.

The next stage in testing the model performance was to demonstrate that it did not require
this exact structure in order to be able to provide reasonable predictions. The structure
was changed to have non-linear boundaries between rock types along the investigated

region.

Figure[ 3.12 shows the noisy truth of the new dataset, with some examples of the acoustic

impedance traces along the surface. This different structure means that the periodic
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Transfer function

MSE

Identity
Moving average
Running median

Absolute value

2.61
2.90
2.34
11.60

48

Table 3.2: Mean squared error of the reconstructions.
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Figure 3.12: (a)image of an alternati?e6 x 256 simulated truth, with non-linear rock

type boundaries (b) and (c) are two acoustic impedance examples from this simulated set.

boundary conditions used in the wavelet decomposition may be more questionable. Figure
[3.14 shows that the modelling method still appears to work, with the reconstruction MSE

of 3.08 being slightly higher than for the previous dataset.

3.6 Incorporating neighbouring traces
In geological applications, it is often noted that adjacent traces have similar acoustic
impedance patterns. It was considered that the traces obtained from the two neighbouring

sites may improve the predictions obtained from the model. The idea behind
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Figure 3.13: Stationary wavelet transform of the sample truths from Figurg 3.12 (b) and

(c) respectively using Daubechies Extremal Phase basis with 2 vanishing moments.

introducing neighbouring traces into the model was to investigate whether information for
surrounding points would improve the predictions. This was particularly of interest when
there was an underlying trend in the acoustic impedance boundaries, as is the case in the
alternative dataset which has a gradual increase in the depth of the acoustic impedance
boundaries. From a practical point, geophysical exploration is usually carried out on a

grid and incorporating neighbouring traces would further increase the model’s flexibility.

Consider the set of deconvolved noisy simulated reflectivity coefficiefts,=
(Z1,...,Zy56), with each of the recorded traces being of length 256, generated to
represent an underlying true acoustic impedance struckire; (X, ..., X25). Let

the wavelet coefficients of each of thi& be denoted by{d},}, then for each value

of i = 1,...,256, there is a corresponding set of wavelet coefficiefits, }, with

j=1,...,8andk =1,...,256.

The chosen transfer function, the running median with window length 5, is then applied

to each of thg{d}, } and these processed coefficients will be denote@a@,y}.

The underlying truth for the one of the locations along the line of inteféstis assumed
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Figure 3.14. (a)Representative reconstruction of the alternative dataset (b)Mean

reconstruction of the whole image.

to be known and a linear regression model can then be built using the processed wavelet
coefficient series as explanatory variables. This produces a satlidervations of each

of thecig'.’s, which are then used to build a model of the form:

_ (»—1) 7(p—1) PP (p+1) F(p+1)
Xp—Zaj dj +ozjdj~|—aj dj
J

wherej = 1,...,8 corresponding to the 8 resolution levels. This model is then used
to predict each of the&X,, ..., Xy55 from the corresponding series of processed wavelet
coefficients. Note that predictions are only made for traces with neighbouring traces, that

is no predictions are produced for the and X,56 traces.

3.6.1 Original Dataset

Figureg 3.15 shows the reconstruction of the acoustic impedance, using the recorded traces,
based on this neighbour modelling method. Comparing this to Higure 3.9(a), it can be seen

that a similar ‘bump’ can be observed after the true acoustic impedance returns to its lower
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value. However, comparing the average mean squared error of the reconstructions using
both methods, the neighbouring traces method performs better, with an AMSE of 3.49

compared to that of 2.34 for the sole trace method.

Figure[3.16 shows the reconstruction of the Acoustic impedance, using the deconvolved
data estimates for the reflectivity coefficients, based on this neighbour modelling method.
This reconstruction appears to be similar to that using only one trace (ffiglire 3.9(b)) but
again the neighbouring traces method reduces the AMSE of the reconstruction from 2.34

to 2.11.
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Figure 3.15: Neighbouring Traces reconstruction using recorded traces, (a) representative

reconstruction, (b) image reconstruction.

3.6.2 Alternative Dataset

Figure[3.1} shows the reconstruction of the Acoustic impedance, using the recorded
traces, based on this neighbour modelling method. Figuré 3.18 shows the reconstruction
of the Acoustic impedance, using the deconvolved data estimates for the reflectivity

coefficients, based on this neighbour modelling method. The reconstructions using both

the data and the deconvolved reflectivity coefficients appear closer to the underlying truth
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Figure 3.16: Neighbouring Traces reconstruction using deconvolved reflectivity

coefficients, (a) representative reconstruction, (b) image reconstruction.

for this dataset. However, the model using the deconvolved version of the data performs
slightly better in terms of the AMSE of the reconstruction, but with less percentage

improvement than in the original case. The overall AMSE is also reduced, suggesting
that when there is a changing structure in the rock decomposition, using the neighbours

in the modelling improves the overall fit.

Model data Original Dataset Alternative Dataset
Reflectivity coefficients 2.11 1.16
Recorded trace 3.49 1.80
No neighbours reflectivity 2.34 3.08

Table 3.3: Average mean squared error of the reconstructions using the nearest

neighbours.
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Figure 3.17: Neighbouring Traces reconstruction using recorded traces - alternative

dataset, (a) representative reconstruction, (b) image reconstruction.

3.7 Conclusions and further work

Modelling using transformed wavelet coefficients can provide an insight into the
underlying frequency structure when used to model acoustic impedance in differing rock
types. The drawback to this modelling method is that it requires some instance of the true

acoustic impedance to be known in order to train the model.

Convolution, which occurs in a standard reflection seismic setup, can mask some of the
frequency structure contained in the data. However, deconvolution seems to restore some

of these properties and is robust to the actual frequency of the deconvolution filter.

Using neighbouring traces in order to train the wavelet models on more explanatory
variables increases the accuracy of the reconstruction. This improvement is reproduced

during replication of the data simulation, suggesting that this is not due to over fitting.

Some of the reconstructions of the original dataset have demonstrated a ‘bump’
downstream of the feature. It may be of interest to analyse the data ‘backward’ to see

whether the bump appears in both cases. In this case improvements maybe observed if
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Figure 3.18: Neighbouring Traces reconstruction using deconvolved reflectivity
coefficients - alternative dataset, (a) representative reconstruction, (b) image

reconstruction.

analysis in both direction was undertaken and the average used for prediction.

Various methods exist in the literature for the analysis of seismic data, from spectral

methods |(Chakraborty and Okaya, 1995) to fuzzy clustening (Peijie let al.,| 2006).

However, the applications vary and there is no direct comparison of the performance of

the techniques developed to these existing methodologies.
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Chapter 4

Tomographic Data Modelling

4.1 Introduction to tomography

Electrical tomography techniques provide a cheap and non-invasive approach to the
study of static and dynamic processes. Such techniques are widely used in geophysical,
industrial and medical investigations. The key common feature of all tomographic
techniques is that measurements are taken outside or on the boundary of a region with
the aim of describing what is happening within the region. In industrial applications
of electrical tomography, multiple voltages are recorded between electrodes attached to
the boundary of, for example, a pipe. The most usual first step of the analysis is then
to reconstruct the conductivity distribution within the pipe. The most commonly used
approaches to reconstruction are based on domain discretization, for example using the
finite-element method, leading to ill-posed inverse problems. Usually, such problems
are ill posed because there are multiple solutions and the solutions do not depend
continuously on the observed data. Stable solution then requires regularization. Even
if reliable reconstruction is possible it only provides an image representing the conditions
within the pipe. Although this is useful for process visualisation, for the automatic control

such an image is at best unnecessary, and will require further post-processing to allow
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control parameters to be obtained.

There is a growing sentiment (Stitt and Janies, 2003) that in a field application the
ambitions may be far more limited than in the research environment. That is simple
guestions such as “is there or is there not a problem?” are more important than obtaining
high quality flow and phase patterns within the vessel. Also, that the aim should be
to reveal process behaviour in process terms rather than industrial process tomography
terms (Hoyle, 2004). One interpretation of these suggestions is that control parameter
estimation, rather than process visualization, is the more appropriate output of a data
analysis in many real situations. In particular, there is a need for sensing systems,

modelling and algorithms that are simple, fast and can operate largely unsupervised.

4.1.1 Flow pattern terminology

When two different components are flowing through a pipe, the simplest model of the flow
assumes that the minor component is distributed uniformly within the main component.
However, this will not always be the case and different flow patterns will produce different
expected tomography measurements. Thus to identify any desired anomalies in the flow,

the flow pattern must be considered.

Non-uniform flow patterns may occur in flows consisting of any combination of liquid,
solid or gas. For illustrative purposes, the flow of a mixture of gas and liquid is considered.
Such situations have a high density difference between the two components and are

readily observed in industry.

To describe the flow pattern, it must be acknowledged that there are many possibilities
due to the surface tension effects. In practice, the flow type is often classified into one of
various ‘flow regimes’ which provide a qualitative and subjective description of the flow

pattern.

The typical flow regimes, shown in Figyre 4.1, for a vertical pipe are:
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e bubble flow. This is where the gas bubbles are dispersed throughout the liquid.

¢ slug flow. This occurs when the bubbles coalesce and become large so that they are

almost as wide as the pipe.

e churn flow. As the velocity of slug flow bubbles increases, they start to break down.

This creates an unstable regime with both wide and small bubbles.

e annular flow. The liquid flows on the walls of the pipe and the gas flows,with small

liquid droplets, in the centre.

e
lI

—

Bubble Slug Churn Annular
Flow Flow Flow Flow

Figure 4.1: A visual representation of some typical flow regimes.

4.1.2 Experimental setup

Consider the flow of a gas through a liquid in a section of vertical pipe. The gas enters at

the bottom of the section of pipe under pressure and travels rapidly up the length of the
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pipe. The gas fraction and bubble size are controlled by the inlet size and by the input
pressure. To control process efficiency it is important to monitor the flow regime, and to
adjust the input parameters accordingly. In the following simulation study, bubble, churn
and an intermediate flow between these will be considered. It is assumed that the gas has
conductivity 1Qm and the liquid conductivity 22m. The key part of the simulation is to
generate spatial patterns for the bubbles that evolve temporally. These will in turn define

the conductivity distributions.

In electrical tomography, for given conductivity distributions the boundary voltages are
found using Maxwell's equations, and appropriate boundary conditions. This is the
forward or direct problem. The forward problem is solved numerically using the finite-
element method (FEM). For examples of FEM-based approaches see West et al. (2003,
2004).

The data simulation scheme used later in this chapter is motivated by the widely used
‘reference protocol’ for an eight-electrode electrical tomography system. This is when
the electrodes are equally spaced in a ring around a cylindrical pipe. In this protocol

a fixed current is passed between a common reference electrode and each of the other
electrodes in turn, hence producing seven current patterns. For each current pattern an
induced potential field is created within the pipe which depends on the current pattern, and
upon the conductivity distribution within the pipe. This potential field is probed by taking
multiple voltage readings between the reference electrode and each of the other electrodes.
For each current pattern seven voltages are recorded leading to 49 measurements at each
time point. Further, the process is allowed to evolve for 256 time points. Once noise-free
voltages are obtained uncorrelated Gaussian noise is added to yield the simulated dataset.

Hence the full dataset forms 7-by-7 electrode-pair time series of length 256.
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4.1.3 Local frequency properties of recorded data

The signals from each of the flow regimes exhibited extremely different behaviour, which
can be explained in terms of the frequency of the change in the measurements. The bubble
flow with its small pockets of gas in liquid produced more rapidly varying measurements
than the churn flow, with the intermediate flow lying somewhere in between (see Figure
[4.7). It was anticipated that this difference in the traces would be detectable at the various
resolution levels of the wavelet decomposition (Fidure 4.3), which contains information

about the detail of the signals at differing scales.

(a) Bubble (b} Churn (c) Intermediate
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Figure 4.2: Sample simulated series from each of the flow regimes.

Looking at the plots of the non-decimated transforms (Figurg 4.3) of the measurement
data, it can be seen that at the finest resolution level, there is a lot of activity for the
bubble flow and considerably less for the churn flow. Any fine scale activity in the churn
flow seems to correspond to the appearance of large bubbles. Looking at the coarse scale
activity, it can be seen that most of the activity of the churn flow occurs here, with much

less activity from the bubble flow.

This indicates a difference in the high frequency activity of the signals which may be

easily detectable using the wavelet transform.
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Figure 4.3: Non-decimated wavelet decomposition of the corresponding time series from

Figure/4.2.

4.2 Data simulation

4.2.1 Method

The simulation of the recorded voltages is possible as, if the resistivity of the pipe
contents is assumed, then boundary voltages can be calculated through the solution
of Maxwell’'s equations. In practice this is done numerically, using the finite element
method. The problem is well posed and voltages can be obtained at least to the accuracy

of measurements.

In the direct problem, the resistivity distributignis specified. It is sometimes more
convenient to make use of the conductivity= 1/p. An assumption in the simulation
scheme is that resistivity is constant across pixels. The electric-field potential is required
at points of the domain boundary from which potential differences (voltdges)RY

can be calculated.

This is a well-studied and supported mathematical problem relating the unknown

conductivity distribution and the observed voltage measurements. If the conductivity
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distribution is given then voltages on the boundary can be found using Maxwell's
equations, and appropriate boundary conditions. In practice this is usually done
numerically, using the finite element method (FEM) (see Vauhkonen|é€t al.|(2001) for

details).

4.2.2 Some mathematical background

Within a domain, Maxwell’s equations can be condensed to the form
V(eVe)=0
for the conductivity vectos.

The boundary of the domain will comprise of electrod&sk = 1,. .., 8), leading to the

following boundary conditions (Cheng et|al., 1989).

0
(¢+<kga_¢) =U, k=12,... K
n) g,
/a@dssz k=1,2,....K
By n
a% =0
Mg\ UL, B,

Within the area being considered Maxwell's equations can be used to produce the
following elliptic partial differential equation relating the spatial conductivity distribution

o to the electrical potentiat) (give a reference)
V- (oV¢) =0. (4.1)

On the boundary, where the electrodes are located, there are additional boundary

conditions:

99
(o+< 52)

9¢
:Uk, / (T—dS:[k;, k:1,2,---K,
5 5 On (4.2)
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on the electrodesF), (k = 1,2,...,K), and on the insulating boundaries between
electrodes
0
O’—¢ =0, (4.3)
on

where( is the contact impedances of the electrodésdenotes the potential on thé&"
electrodeF),, I, the current at electrod®), andn is the outward unit normal of the
boundary. The boundary conditions simply say that the potential measured at an electrode
is higher than on the inside surface of the electrode due to the contact impedance, that the
total current integrated over the surface of the electrode is equal to the specified current,

and that no current passes across the insulating boundaries.

Here current passes between a reference electrode and each of th& etleetrodes in

turn, hence producing’ — 1 current patterns and leading to = (K — 1) measured
voltages. These voltage measurements are obtained by solving this system of equations.
It is not possible to obtain the voltages explicitly so instead the finite element method
(FEM) can be used and here calculation have been done in Matlab using the software
package EIDORS-2D (Vauhkonen et al. (2001)) based on code developed by West et al.
(2004).

To produce the data used here a conductivity distribution is generated by selecting bubble
locations randomly across the region. The number of bubbles and their sizes depend
on the regime, that is bubble or churn, within the study area. Bubble flow has many
small bubbles which pass the electrodes quickly. In contrast churn has fewer but larger
bubbles which occupy a larger cross-sectional area and take longer to pass the electrode
position. These conductivity distributions are passed to the Matlab code which then gives
calculated voltages, that is ones without measurement error. The data measurements are

then obtained from the calculated voltages by adding independent gaussian noise.
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4.2.3 Control parameters

There are several parameters that may be altered to simulate different flow regimes. These

will include:

Gas volume — the proportion of gas to liquid was kept constant over time.

Conductivity of the component fluids — this was set to be constant with a mixture

of two fluids with conductivity ofl Q2m and2 Qm respectively.

Bubble size — determines the nature of the flow. Many small bubbles or a few

larger bubbles would be examples of different types of flow.

Length of bubble. This would reflect the likelihood of the bubble remaining in the

same place as time evolves.

4.3 Modelling using frequency characteristics

4.3.1 Introduction

The idea is to use the coefficien{d,;;} of the non-decimated wavelet transform in
the model building process. The reason for this is that different frequency properties
will manifest themselves as coefficients of increased magnitude at different resolution
levels. For example, high frequency characteristics will mean a lot of activity at the finer
resolution levels, while low frequency characteristics will be represented at coarser levels.
One of the aims of the modelling process is to detect changes in flow regimes and for this
reason, Haar wavelets were used. Longer filters will incorporate information over longer
time windows in the coefficients and may affect the model's ability to detect the flow

regime change points.
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Initially for the tomography data, a combination of bubble and churn flows are considered
(Section[ 4.3.3). The nature of the data suggests a logistic regression model will be
appropriate. A more challenging problem is given by data having some characteristics
of both churn and bubble flow (called the intermediate flow) being considered. For these

data, a multinomial logistic regression model was appropriate (S¢ction 4.3.5).

In both modelling approaches, working with the raw coefficients gave poor results in

terms of flow regime prediction and sdransfer functionSectior] 3.4) was incorporated

into the modelling process, which is illustrated in Figurg 4.4.
v
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Figure 4.4: Modelling process.

The wavelet decomposition plots (Figure]4.3) show that the pattern of the wavelet
coefficients is different at each resolution level for each flow regime. The fitted model

will then aim to relate this different activity to the individual flow types.
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4.3.2 Transfer function choice

The coefficients require some pre-processing in order to exploit the desired properties
of the data. This is achieved by applyingransfer functionto the wavelet coefficients

before the model building stage.

In this problem there are 49 sets of wavelet coefficients at each time point, all representing
slightly different regions of the pipe cross section. As the aim of the model will be to
predict flow regime in the pipe at any given time, it would be sensible to combine the 49
coefficients in some sense due to the symmetry within the simulated data. Also, since
we are interested in the level of activity (or frequency of the recorded signal) at each
time point, it can be argued that the magnitude of the wavelet coefficients is what we are
really interested in. This will avoid the possibility that large negative and large positive
coefficients could be represented by a number close to zero after the averaging step. Itis
suggested the combining by taking the average of the absolute values of the 49 coefficients

at each resolution level will give a reasonable measure.

If the wavelet coefficients of tha&h electrode pair signal are representec{b}é}, where
i = 1,...,49, and {d*j.k*} represents the thresholded coefficients, thenéattavity

measurega;; } used in the model building stage are defined as
No thresholding

a = % > I3 (4.4)
With thresholding Z

- (4.5)

wherej =0,...,J — 1, for J = logy(n) andk = 1,...,n — 1, wheren is the number of

time points observed.

The thresholding method used here was the universal threshold of Donoho and Johnstone

(1994). The aim was to see if thresholding could give any improvement in the model
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predictions. Further refinements could be to consider different thresholding policies to

optimise the model performance.

Other possible activity measures

There are several other ways in which the coefficients could be transformed to obtain
an activity measure. One possibility is using the coefficient of variation, which is a
normalised measure of dispersion and in this setting could be found over the 49 detall
coefficients at each resolution level and location, again resulting in an 8 dimensional
vector measure for each time point. Let(.) denote the standard deviation and)
denote the mean, then the coefficient of variatiap,, is defined as,,. = sd/u. An
alternative activity measure;;, could then be calculated as

sd(djy, ..., d}9)

w(diys - d39)

Njk =

Another similar possibility is the coefficient of dispersion, which is defined as the
maximum absolute deviation divided by the median. This would result in an alternative

activity measurex;;, which could be defined as

1
/ﬁjk:EZ

%

d’,, — mediar{d’; )
mediar{d’; )

4.3.3 Logistic modelling

Since the response variable is dichotomous, as two extreme flow regimes are being

considered, logistic regression is used. The form of the model is

log (%) = fo+ X+ + X, (4.6)

wherep is the probability that the response is bubble flow, and heéreg the probability

that the response is churn flow. The quantitiés X, ..., X; are the independent
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predictor variables and the parametgisgs, ..., 3;, the regression coefficients, which
have to be estimated from the data. The aim of building such a model is that given
an observed signal, a prediction can be obtained from the transformed electrode-pair
readings, giving the probability that the observed flow is from either a bubble or churn
type flow regime. The logistic regression modelling idea extends to categorical variables
with more than two values, using a multinomial approach. This methodology would allow

the classification into more categories of flow regime (as in Setion 4.3.5).

For training the logistic regression model, a dataset of 256 time points of churn flow,
followed by 256 time points of bubble flow was used. Uncorrelated Gaussian noise,
with constant standard deviation, was added to the signal. The non-decimated wavelet
transform of the observed measurements, using the Haar wavelet, was found. The
calculations were performed using the WaveThresh package (Nason, 2005) for the
statistical programming environment R (R Development Core Team,| 2007). For each
electrode pair this produced nine time series of length 512, each representing the signal at

differing frequencies.

At each time point, the activity measure of the wavelet coefficients was found, either
before thresholding (equatipn 4.4) or after thresholding (equation 4.5), for each resolution
level and time point. As the actual flow regime was known, this data could then be used
to build a logistic regression model. In the model build the calculated activity measures
aj = (a;1,...,a; Oray” = (aj,...,aj) take the role of theXy, ..., X; in equatio,
withi=1,...,J.

The model was used to predict flow regime in a set of independently generated flow
patterns. This consisted of 168 time points of bubble flow, followed by 256 time points of
churn flow, followed by 88 time points of bubble, with added Gaussian white noise with
the same standard deviation as in the training dataset. We emphasise that the structure
of the test dataset was different to that of the training dataset. The purpose of this was

to demonstrate that the model predictions were not seriously affected by the structure of
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the underlying dataset. The predictions generated by the model are probabilities of the
time point being in bubble type flow. If these predicted probabilities were greater than or

equal to 0.5, the model was regarded as predicting bubble flow, otherwise the prediction
was churn flow. The correct classification rates (i.e. the percentage of time points which
are classified correctly) for the models built using both thresholded and non-thresholded

activity measures are shown in Figlire]4.5.
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Figure 4.5: Correct classification rates for the logistic model for two regime model using
thresholded, non-thresholded coefficients compared to a linear discriminant method based

on the wavelet coefficients.

The error bands shown ate? standard errors of the prediction rate over 100 replicates at

each noise level.
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The noise standard deviation is related to the signal to noise ratio by the formula

signal standard deviation
SNR = . —.
noise standard deviation

The thresholded wavelet coefficients work better for noise levels below those
corresponding to a SNR of 1. In this case the thresholded version is greatly superior,
with the predictions being much more clearly separated into bubble and churn regimes.
Beyond this the non-thresholded coefficients perform better, as the SNR decreases. The
reason for this is that at low noise levels, thresholding is able to denoise the coefficients,
whilst at higher noise levels, the signal will be swamped by noise and so the thresholding

process will also damage the signal component.

For automated use of this procedure, it would be valuable to be able to determine from
the data whether we are in a 'low noise’ (high SNR) or ’high noise’ (low SNR) situation.
We could then use the thresholded or non-thresholded approach accordingly. Since the
wavelet thresholding procedure involves estimation of the noise standard deviation, and
the thresholded signal estimate can be used to estimate the signal standard deviation, this

should be a feasible approach to producing an adaptive monitoring procedure.

4.3.4 Discriminant Analysis

In order to benchmark the performance of the model built in seftion|4.3.3, the alternative
method of discriminant analysis was used to predict flow regime from the activity

measures.

Discriminant analysis is an alternative to logistic regression, which has some prerequisite
assumptions (independent variables need to be normally distributed, linearly related, or
have equal within-group variances). However, discriminant analysis is preferred when the
assumptions of linear regression are met since it has more statistical power than logistic

regression.



Chapter 4. Tomographic Data Modelling 70

Here the setup is that we have two known groups and each new observation must belong
to either of these reference groups. The way discriminant analysis works is to assign the
observation to the nearest group based on some distance measure. In this example, the
Mahalanobis distance is used. Litdenote the reference group means, with (1, 2).
In this situation, the distance measure of an observed pdiom group:, D?(i) is given
by:

D*(i) = (u — 7)) W 1(u — T;)
, whereW is the within groups variance of the two reference groups. This measure
allows the two clusters of points to be assigned with some allowance for the within cluster

variance. See Gnanadesikan (1997) for more details about discriminant analysis.

The activity measure used in the logistic regression modelling in the previous section
resulted in a nine dimensional response for each time point, each number representing
activity at a different frequency. It was anticipated that these activity vectors could be
analysed using the statistical method of linear discriminant analysis (see for example
Manly, [200%), which aims to map objects into one of several groups by means of their
features and measurements. The training dataset from Séctioh 4.3.3 was decomposed
using the Daubechies Least Asymmetric (8) wavelet to generate activity measures as
described above. A linear discriminant rule was then trained on these activity measures;
this rule was then used to classify each time point in the test dataset to either bubble or

churn flow.

Initially for the logistic regression models, Haar wavelets were used. This was motivated
by their short support and therefore increased ability to detect high frequency activity.
However, when using discriminant analysis, this basis performed poorly. It appeared
that this was a result of the low correlation between the detail coefficients, which are
then used in estimating the covariance matrix in order to establish a distance metric
for the discriminant analysis. For this reason, a longer filter was opted for and so the

Least Asymmetric with 8 vanishing moments was used. The longer filter means the
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correlations are more stable and hence less prone to erratic behaviour due to a few outlying
coefficients. This also suggests that a discriminant approach may be more sensitive to the

choice of wavelet.

4.3.5 Multinomial logistic regression

We now consider data with three types of flow regime. The bubble and churn regimes
from the previous section and an intermediate flow which lies somewhere between the
two in terms of activity frequency. A multinomial logit model is fitted here as there are 3
response categories, that is bubble (state 1), churn (state 2) and intermediate (state 3). The
modelling process used in R to fit a multinomial logit employs a neural network approach

to estimate the probabilities, that thekth observation is from state using the activity
measureqa;; } as predictor variables (Venables and Ripley, 2002). To ensure that the
resulting probabilities sum to 1, one category is set as the baseline (here chosen to be

state 1), so thagi,; = 1 — 2?:2 prw and then we have

exp(al 3)
Dkt = , 1=1,2,3;, k=0,...,n—1.
1+ exp(a} B2) + exp(a} Bs)
wherea, = (ao,...,a—1%) and thed’s are vector valued regression coefficients.

Further details of the multinomial model and the fitting algorithms used can be found

in|Faraway|(2005).

A dataset composing of approximately equal proportions of the three flow regimes was
used and white noise was added to the signal, representing measurement error. The non-
decimated wavelet transform of the observed measurements, using the Haar wavelet, was
found. For each electrode pair this produced nine activity level time series each of length
512, each representing the signal at differing frequencies. As the actual flow regime was

known, this data could then be used to build a multinomial regression model. This model
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was used to predict flow regime in a set of independently generated flow patterns, with

similar proportions of each flow regime to the training data.

4.3.6 Correct classification rates

Figure [4.6 shows the correct classification rates for the models built using both
thresholded and non-thresholded activity measures, averaged over 100 replications. Also
shown are approximate point-wise 95% confidence intervals calculated using the standard

errors from the replication.
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Figure 4.6: The correct classification rates for the model predicting three flow regimes,

both with and without thresholding.

For all noise standard deviations below 0.07, it can be seen that the thresholded version
outperforms the model without thresholding. Here, the performance of each method

is approximately constant. The correct classification rate for the thresholded logistic
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regression was approximately 93% for all noise standard deviations below 0.07. A
standard deviation of 0.07 corresponds to a signal to noise ratio of 1; i.e. the “strength”
of the signal and noise are roughly equal. For larger noise standard deviations the
performance of the method with thresholding degrades, but the non-thresholded method

appears to have a slower decrease in success rate.

4.3.7 Misclassification

The misclassification matrix resulting from the model is shown in Table 4.1. It can be
seen the model successfully classifies at least 88% of all data points regardless of what
flow regime it is actually from. This also shows that the main source of classification
error is in classifying bubble flow as intermediate flow, which seems reasonable due to

the similarity of the recorded data observed in Figuré 4.2.
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Figure 4.7: Some exploratory plots of the five flow regimes.
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bubble churn

75

True Flow Regime

intermediate

Predicted
Flow

Regime

bubble
churn

intermediate

0.88
0.04
0.08

0.00 0.04
0.99 0.00
0.01 0.96

Table 4.1: Matrix of the correct cross-classification rates between the three flow regimes

for a thresholded model with the added white noise standard deviation equal to 0.05.
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4.4 Extending to more simulated datasets

4.4.1 Introduction

As in Section 4.3]5, it was possible to generate further datasets by varying the input
parameters of bubble size and bubble length and considering more intermediate values
between the bubble and churn extremes. This was done to obtain three further
intermediate datasets (A, B and C). The relation to the original ‘bubble’ and ‘churn’ data
was assumed to be unknown. A plot of an example of each of the five flow regimes used
and the corresponding wavelet decomposition plots are shown in Figdre 4.7. It was of
interest to investigate how similar the three intermediate datasets were to the original. It
was thought that the technique of multidimensional scaling would prove useful for this

purpose.

4.4.2 Multidimensional scaling

Multidimensional scaling is defined as a collection of methods with ‘the goal of
detecting meaningful underlying dimensions that allow the researcher to explain observed

similarities or dissimilarities between the investigated objects’ (StatSoft, Inc.| 2007).

Given a set ofn points in Euclidearp-space it is possible to compute the distance
between any pair of points and can obtainrarx n distance matrix or dissimilarity
matrix (D). Multidimensional scaling answers the question of whether when given an
n x n symmetrical matrix {4 = ¢;;) of dissimilarities, can a configuration of points be
found in Euclidearp-space f open to choice) such that the calculated distance matrix

(D) reasonably matches the given dissimilarity mat.(

Figure[4.8 shows how different multidimensional scaling techniques separate the flow

regimes. It can be seen that there is no clear separation of the regimes using these
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True Flow Regime
Bubble A B C Churn
Bubble| 100% 47% 17% 39% 4%

Predicted A| 47% 100% 40% 39% 5%
Flow B| 17/% 40% 100% 49% 14%
Regime C| 39%% 39% 49% 100% 23%

Churn| 4% 5% 14% 23% 100%

Table 4.2: Similarity matrix (thresholded) of the five simulated datasets.

techniques.

4.4.3 Investigating the data using logistic regression

For a measure of similarity between each of the 5 simulated datasets, each pairwise
combination was analysed in a similar fashion to the bubble and churn datasets in Section
[4.3.3. This produced a correct classification probability for each pairwise combination of

datasets, which was then used as a measure of similarity.

The similarity matrix obtained for the thresholded model was found and is shown in Table

[4.2. The similarity for the non-thresholded models is also shown in Talle 4.3.

These similarities will be used later (Sectjon|4.5) in assessing how well a model performs

dependant upon how well it classified flow into ‘similar’ datasets.

Comparing Tables 4.2 and 4.3 shows that when the underlying data has been thresholded,
the similarity of each of the flow regimes increases. This is intuitive since the differences
between some of the higher frequency regimes may have been observable at finer
resolution levels, information which may be removed by thresholding. It can be seen

that regime A is most similar to bubble flow. For the thresholded version, regime C has
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True Flow Regime
Bubble A B C Churn
Bubble| 100% 37% 7% 3% 7%

Predicted Al 37% 100% 27% 5% 3%
Flow B 7% 27% 100% 36% 32%
Regime C| 3% 5% 36% 100% 16%

Churn| 7% 3% 32% 16% 100%

Table 4.3: Similarity matrix (not thresholded) of the five simulated datasets.

relatively high similarities to all of the other regimes, suggesting that this flow combines
characteristics of both bubble and churn flows. Regime B is most like regime C, but also
has similarities to churn flow. This may mean that differentiating between B and C will
be difficult.

If we consider the dissimilarity matrices, derived from Taljle§ 4.2 [and 4.3 using the
relationshipdissimilarity = 100% - similarity as distance matrices, multidimensional
scaling can be used to obtain a visual representation of the similarities of the flow regimes.
Figure[4.9 shows the result of classical scaling, although Kruskal and Sammon methods

gave similar results.

From Figurg 4.0 it can be seen that for the non-thresholded models, the first dimension
separates the flows into two groups, bubble with A and the churn with B and C. The
second scaling dimension then separates A from bubble and B and C from churn, but the
separation between B and C in this second dimension is not as great. For the thresholded

version, flows B and C are very similar in the first dimension.
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Figure 4.8: Multidimensional scaling of the recorded data. (a) and (b) shows plots of the
1st, 2nd and 3rd principal components, (c) shows the first two dimensions using Sammon

mapping and (d) shows the first two dimensions using Kruskal mapping.
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Figure 4.9: Using Multidimensional scaling to separate the flow regimes.
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4.4.4 Alternative use of MDS to separate flow regimes

An alternative measure of distance between the flow regimes could be considered. This
time, the activity measures were found using equdtioh 4.4 for each of the test datasets.
This produced 256 time points represented at each of 8 resolution levels for each flow
regime. The mean of the activity level

i 1

ar = ajk

> J ; ’

was then found at each time point. Each flow regime then represented by an 8-vector.
The reason for using the mean was that the flow regime will be represented over all 256
time points and so a typical activity level might help to identify differences between flow

regimes in terms of the activity level representation.

The Euclidean distance between the 8-vectors was found and used in Kruskal’'s non-metric
scaling method (Cox and Cox, 2001) to map the points into 4 dimensions. Kruskal's

scaling method minimises the ‘stress’ of the configuratigygiven by:

S: (Zj<k(0(%k> - &jk)2> |

Zj<k %z'k-
. This resulted in a solution which was more tightly clustered and a representation of the

fitted configuration is shown in Figufe 4]10.

4.5 Further multinomial examples

It was also possible to fit a multinomial model to a dataset consisting of a compilation of
four or five of the flow regimes. The purpose of this was to check for model consistency
and explore how well the modelling technique would perform when the test data are more

similar in terms of their frequency characteristics.



Chapter 4. Tomographic Data Modelling 82

<
o
S o« | e 5 _ 5
o [}
5 g 8 C B
£ o | D E ©
©
- ° B a 2 i D
S o | ®
? S
T T T T T T 9 T T T T T
-0.6 -0.2 0.0 02 04 -0.05 0.05 0.15
1st dimension 2nd dimension
N
o 4
=)
5 .
g A
o
ESP E g
©
£ . C
<
N
o
S 4
[ T T T T T T
-0.04 -0.02 0.00 0.02
3rd dimension

Figure 4.10: Kruskal scaling applied to the activity level measures. Key: A — Bubble, B

— Churn, C — Flow A, D — Flow B, E — Flow C.

It can be seen from Figufe 4.7 that the intermediate flows A, B and C are more visually
similar than the two extremes of bubble and churn flow. This can also be seen from
the multidimensional scaling approach in Figiire] 4.9. To test the performance of the
method, first a 4 level response multinomial model was fitted to a regime consisting of a
combination of the bubble, churn, flow A and flow B. As a further test the method was

then tried on all 5 flow regimes.

The 4 flow example consisted of 256 time points of each flow in the build sample. The test

sample consisted again of 256 blocks, but with a alternative ordering of the flow regimes.

The 5 flow regime example consisted of 205 time points of each of the first four flows,

together with 204 time points of the final intermediate flow. This order was again changed
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True Flow Regime
Bubble Churn A B
Predicted Bubble| 36% 13% 71% 6%

Flow Churn| 4% 64% 15% 33%
Regime Al 18% 13% 14% 6%
B| 42% 11% 0% 55%

Table 4.4: Correct classification rates for the 4 flow regime model.

in the model test sample.

4.5.1 Results
Multinomial model with 4 response levels

As shown in Tablé 4]4, the model performed best on the lower frequency regimes, with a
Churn correct prediction rate of 64% and that of Flow B being 55%. As Flow B is most
similar to Churn, if classifying as either of these regimes is considered a partial success

then the classification rates increase to 75% and 88% respectively.

The worst correct classification was that of Flow A, which was chronically predicted to
be Bubble flow. However, it is clear from Figure §.7 that these two regimes do share
similarities. A prediction rate of 85% is observed when considering whether Flow A was
classified as a high frequency flow regime. The model misclassified 64% of the bubble

flow as other flow types, yet most of the wrong predictions fell into the Flow A category.

The addition of a further flow regimes has, in this case, decreased the reliability of the
model. Despite this, the model is still able to classify on the broader scales of high or low

frequency regime.
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True Flow Regime
Bubble Churn A B C
Bubble| 100% 5% 1% 28% 0%
Predicted Churn| 0% 50 0% 28% 100%
Flow A 0% 0% 28% 0% 0%
Regime B 0% 90% 70% 43% 0%
Churn| 0% 0% 0% 0% 0%

Table 4.5: Correct classification rates for the 5 flow regime model.

Multinomial model with 5 response levels

Looking at Tabl¢ 45, it is apparent that the modelling method breaks down further as one
more possible regime is added. The model predicts 100% of Bubble flow correctly, yet is
unstable for all of the other regimes. The modelling method seems unable to predict with

any reliability when 5 flows are considered.

4.6 Conclusions

Wavelets have been shown to be a useful tool in extracting information from time series
with changing frequencies. This chapter has identified some methods that can be used in

an electrical tomographic setting, where such frequency changes exist.

The transfer functiorwas identified as an important step in the modelling process. This

encoded the desired characteristics of the data to allow interpretable models to be built.

Logistic and multinomial regression techniques can be used to predict flow regime, with
varying degrees of success. For distinguishing between up to 3 flow regimes the modelling

method performs well. When the demands of more regimes was introduced, the method
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was no longer able to accurately predict.

Various methods exist in the literature for the analysis of tomographic data, including
extended Kalman filtering| (ljaz et @all, 2006) and the modified Newton Raphson
method |(Williams and Xie, 1993). However, the applications vary and there is no
direct comparison of the performance of the techniques developed to these existing

methodologies.
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Chapter 5

Multiwavelet modelling approaches

5.1 Introduction

5.1.1 What are multiwavelets?

Scalar wavelets as described in Section] 2.4 are based on one father wavelet or
scaling function. Wavelet families with more than one scaling function are known as
multiwavelets and Strang and Strela (1995) described several reasons why multiwavelets
offer advantages over their scalar counterparts. A scalar wavelet system cannot
combine symmetry, orthogonality and higher order approximation as is possible with a

multiwvavelet system.

The theory of multiwavelets is based on the idea of multiresolution analysis (MRA),
similar to that of scalar wavelets (see Sectjon| 2.3). However, the basi¥,fis
generated by translates &f scaling functionsy;(t — k),...,¢nx(t — k). The vector

O(t) = [p1(t), ..., on(t)]T, will satisfy a matrix dilation equation

o) = > HP(2t— k). (5.1)
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The coefficientd, are N by N matrices. A similar relationship holds for the mother

waveletsy (), . .., ¥n(t), which satisfy the matrix equation
V() = > Gud(2t — k). (5.2)
k
Again, here the coefficientsy are N by N matrices.

Equation$ 5]1 and 5.2 are analogous to the dilation equations in the scalar setting. Strang
and Strelal (1995) gives a discussion on how these relations can be reached by considering

wavelet theory as the ‘iterated limit of filter bank theory’.

5.1.2 Prefiltering

The input of a multiwavelet transform must be vector valued. To achieve this when
applying multiwavelets to scalar series, the input must initially be preprocessed using
a prefilter. There are a variety of prefilters in the literature designed to produce vector
inputs, allowing scalar series to be analysed using multiwavelet methods. Some examples

of commonly used prefilters are:

¢ Identity — thisis when a series,, . .., z,, is ‘stacked’ to create a series of vectors,

so for a 2 dimensional multiwavelet transform this series would become
T Tn

X1 L,

e Repeated row— For this prefilter, the series, would become

X1 Tp—1

) Tn

Strela et al.[(1999) propose using a multiwavelet transform for images, where the input

series are then themselves 2-dimensional, removing the need for prefiltering.
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5.1.3 Filter choice

There are relatively few examples of the implementation of different multiwavelet filters
compared to scalar wavelet. These include the 2-dimensional Geronimo-Donovan-
Hardin-Massopust (GDHM) and Chui-Lian families and the 3-dimensional Donovan
family. Higher dimensional multiwavelets exist, but are difficult to obtain explicitly due

to the high dimensional orthogonality conditions.

In the case of a scalar input series, the choice of dimension for the multiwavelet family
and prefilter would be based on choice of support, symmetry or the number of vanishing

moments as in the scalar wavelet case.

Some of the properties motivating the choice of the GDHM wavelet filter will be discussed

in the next section.

5.1.4 Example of a multiwavelet system

One of the simplest multiwavelets bases is that constructed by Geronimo et al. (1996).
This consists of two scaling functions (t), ¢»(t), together with two associated mother
waveletsy (t), ¥, (t), these are shown in Figure 5.1.

This filter has some properties which are not able to be combined in the case of scalar
wavelets, that is symmetry, orthogonality and second order approximation. It also has
short support, with each of the associated scaling functions having supgrand the
wavelets having suppoft, 1] and[0,2]. It can be seen in Figufe 5.1 that both scaling

functions are symmetric, and the wavelets form a symmetric/antisymmetric pair.
The dilation and wavelet equations for this system have four coefficients:

¢1(t)

Pa(t)
= Ho®(2t) + Hy®(2t — 1) + Ho® (2t — 2) + Hy® (2t — 3)

B(t) =
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Figure 5.1: The GDHM multiwavelet basis functions (a) and (b) are the two scaling

functions, with (c) and (d) being the two mother multiwavelets.
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5.2 The decimated multiwavelet transform computation

The decimated multiwavelet transform can be performed in an analogous way to scalar
wavelets using matrix valued high and low pass filters; { Gy} andH = {Hy} , where
inthe GDHM casé: =1, .. ., 4.

Consider a scalar sequence of length, z,,...,z,. Top obtain the wavelet
decomposition using the GHDM filter as described above, the series would find be

prefiltered to a sequence of 2-d vectors.

—— T Tn,
x1,...,x, prefiter ey

T Tn

The next step is to filter this sequence in a similar way to the scalar case using the high
and low pass filtersg andH respectively. The main difference here is that the filtering

step involves matrix multiplication of the vectors in the original sequence.

5.2.1 Example of the decimated MWT

For a dataset containing 4 vectors,with J = 2, the multiwavelet transform can be

computed as follows.
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CJ:{XI,...,Xn}

g2 Ho
CJ—1 dj_1
g2 Hio
CJ—2 dj_o

Figure 5.2: Diagram to show how the first two levels of the decimated multiwavelet

decomposition would be found,2 represents the decimation step.

1. Take the initial dataset

C2 = {02,0702,1&2,2,02,3}

(R

2. Find the first level detail coefficients by applying the high pass fijté c,

d, = 91202

= {(GocCz0 + Gica1 + Gacaz + Gscaz), (Goco2 + Gicas + Gacao + Gscaq)}

—1.325483 —4.153911
"1 —2.476955

—0.3514719
3. The next level of scaling coefficients can be found be applying the low pass filter
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.

C1 = 9{12(32
= {(Hocz0 + Hicz1 +Hacaz + Hscas), (Hoc22 + Hico s + Haco o + Hsca 1)}
3.297056 4.331371
0.891169 | | 7.159798

4. Apply the low pass filtefH to obtain the finest level of scaling coefficients.

Co = 5{1201
= (Hoc10+ Hici1 +Haci o+ Hscqq)
9.060387
8.500387

5. Again, the high pass filte§ can be applied to obtain the finest level of multiwavelet

coefficients.

do = §Gpc
= (Goc10+ Gicr1+ Gacio + Gscrq)
—1.625097
—4.662742

Then the DMWT ofc, will be {d;,dg, co}-

5.3 Non-decimated multi-wavelet transform

The non-decimated multiwavelet transform (NDMWT) can be computed in a similar
fashion to the decimated case. However, analogous to the scalar case (Seftion 2.8) the
high and low pass filters are padded with alternate zero matrices at each level. These
filters are then applied to the data, producing sequences of multiwavelet coefficients at

each level that are of the same length and dimension as the input series.
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Following on from the example in Sectipn 5.2.1, the filters are padded at each level with

a(2 x 2) zero matrix. The resulting wavelet coefficients are:

9.060387 12.470580 11.323128 7.007838
Co = ) 3 )
8.500387 3.677645 5.300387 11.403128
d —1.625097 3.580589 —0.8250967 1.649218
0 — ) ) 3
—4.662742 —2.262742 4.6627417 2.262742

5.4 Modelling seismic data using multi-wavelets

5.4.1 Motivation

In Sectior] 3.B it was observed that incorporating neighbouring traces in the model build
improved the reconstruction of the underlying truth. By considering sets of neighbouring
traces at distinct points in time, it is possible to treat the data as a vector values series.
This can then be investigated using a multiwavelet transform to yield an alternative set
of wavelet coefficients, which could then be used to build a predictive model for the

underlying acoustic impedance.

5.4.2 How to use the wavelet coefficients

As illustrated in Section 5.2.1, the wavelet coefficients obtained from the multiwavelet
transform will themselves be vectors. This means thatrdmresfer function(Sectiorf 3.4)

will have to be altered to accommodate this.

In order to use the coefficients in the modelling approach, a few different transforms of

the coefficients will be explored. Forjadimensional multiwavelet transform, giving



Chapter 5. Multiwavelet modelling approaches 94

coefficients of the formi;;, = (d}k, o ,dg.’k)T, some possible ways to incorporate these

into a modelling framework would be:

[ ]
N

Modulus — use]|d;|| = ((d},)? + - - + (7)) .

Modulus-argument representation The set of angles{é,,...,6,_1}, which
define the vector could be used alongside the modulus to obtain a different

representation of the coefficients.

Splitting — consider each of the seri¢g}, }, ..., {d",} separately.

Scaling the coefficients— the observed coefficients will have different variances

in each component direction. It is possible to map these vector valued coefficients,
d;x, into a scalarf;;, taking account of these differing variances. This mapping
will be of the form

Oir = dfkv;.—ldjk

whereV; is the resolution level covariance matrix, robustly estimated from the
observed coefficients (Huber, 1981). This measure is also the Mahalanobis distance
of the pointd;, from the origin. Barber and Nason (2004) use this sort of measure

in the conext of complex wavelets.

5.4.3 Model framework

As the setup of the original dataset was that of adjacent data readings, no prefilter will be
used, instead the observed traces will be grouped up into 2 or 3 adjacent traces, depending

on the dimension of the filter used.

To model the underlying acoustic impedance trace, a linear regression approach will
be used as in Sectidn 3.B.1. When the idea of introducing neighbouring traces was

introduced, one trace from either side was considered. This will be reproduced here,
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using the 3 dimensional Donovan Wavelet, described in Donovan ét al.|(1996). Several
different ways of incorporating the multiwavelet coefficients into the modelling process

will be explored.

5.4.4 Multiwavelet coefficients

As with the scalar wavelet transform, the coefficients will give a decomposition of the
underlying signal in both time and frequency. In order to identify properties of the
coefficients which might explain characteristics of the underlying signal, it will be useful

to look at the coefficients after the various transforms have been applied.

Split

Figure[5.8 shows the multiwavelet decomposition of the data, using both the GDHM
and Donovan filters. Each graph shows one dimension of the wavelet coefficients at each
resolution level. For both filters, it can be seen that there is increased activity in resolution
levels 3 and 4 in the central region of higher acoustic impedance. At the finest level, it
appears as though more activity is observed outside this region, corresponding to the lower

acoustic impedance level.

Modulus-argument representation

The multiwavelet decomposition of the data using both filters can again be seen in Figure
[5.4. This time the left most graph shows the modulus of the coefficient. The following
graphs show a representation of the angles of the vector, transformed to show their
difference from a zero angle to allow comparison. The modulus-argument representation
makes it difficult to pick out any regions of interest. This suggests that this transform of

the coefficients is masking the properties which we are looking to extract.
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Scaled

Robustly estimating the covariance matrix and transformingdfieto ¢,,’s gives a

scalar representation of the coefficients, which is shown in Figuje 5.5. The scaled
coefficients show clumps of activity, yet these do not line up with where one would expect/
This again suggests that this transform will not be suitable for exploiting the frequency

characteristics.
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5.45 Results

The different wavelet filters are compared based on how well they can be used in the
seismic modelling examples used in Chapier 3. Here the transformed wavelet coefficients
are used to build a linear regression model of the true acoustic impedance based on
a known trace. The model is then ised to predict the underlying acoustic impedance
distribution based on the transformed wavelet coefficients of similar recorded traces.
There are two test datasets and for each, the MSE of the reconstruction using the various
coefficient transform schemes. The choice of transfer function was investigated in each

case and again, a running median approach was preferred and a window of 15 was used.

Original dataset

Table[5.1 shows the mean squared error of the reconstructions. This shows that by far the
best performing method is a combination of the GDHM filter and splitting the coefficients.
For all the other proposed methods, the reconstruction MSE is greater than in the scalar

wavelet models of Chaptg} 3.

Alternative dataset

The modelling methods were then applied to the alternative dataset. The best performance
was again from the split coefficients, the reconstruction can be seen in Fighre 5.7. The
MSE of the reconstruction in this case was 1.14 for the GDHM filter and 3.82 for the
Donovan filter. The GDHM performance here is marginally better than the scalar wavelet
neighbour model, which had an MSE of 1.16.
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Wavelet Type| Coefficient Transform Prediction MSE
Split 0.67
_ Modulus 8.88
Geronimo
Modulus-argument 4.05
Scaled 9.92
Split 9.57
Modulus 11.31
Donovan
Modulus-argument 9.42
Scaled 16.01

Table 5.1: Reconstruction MSE for the original dataset models.
5.5 Modelling tomographic data

5.5.1 Motivation

It was proposed in Sectign 5.4 that multiwavelet transforms may offer some improvement
on scalar wavelets and this was in someway supported by the improvement in the
reconstruction MSE in Section 5.4.5. The aim is to now explore whether using a

multiwavelet transform the application setting of Chapter 4 can offer any improvement.

5.5.2 Model framework

The modelling process described in Secfion 4.3.5 was used to allow comparison to the
scalar wavelet case. In this experiment, the bubble and churn extremes were compared
to one intermediate flow regime and a multinomial model used to predict flow regimes

depending upon the activity measures.

In the tomography datasets, there were 49 series observed over time. In order to allow
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a multiwavelet approach to be used without the need for prefiltering, these series will be
grouped into groups of 2 or 3 depending on the dimension of the filter used. In order to

incorporate all of the series, and as 49 is neither a multiple of 2 nor 3, the set of series was
randomly sampled to provide a set of series with the correct dimension. This should not
impact on the validity of the method as each of the series were recorded from the same

setup of flow regimes types.

5.5.3 Calculating activity measures

The wavelet coefficients obtained will now vary in dimension and in number depending

on the filter used. The activity measures will be calculated using the different methods
for incorporating the coefficients into the modelling process as described in Sectign 5.4.2.
Let p = ceiling(49/m), wherem is the dimension of the filter used awmdiling is a

function which rounds up to the nearest integer.

Split coefficientsThe result of the MWT will givep vector coefficients at resolution level,
j =1,...,J and locationk. The mean of each component of the coefficients was taken

to give a vector valued activity measure. Idtbe theith component of a vector, then

I
ajk’ = — Z djkm.
p rx=1
These are then used in the model build, meaning that there are now explanatory
variables.

Modulus

The modulusy i, of each multiwavelet coefficient was found and the activity measure
was taken to be the mean of these moduli at each resolution level and location gver the

coefficients.

Scaled
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True Flow Regime

bubble churn intermediate

Predicted bubble| 0.85 0.12 0.19
Flow churn| 0.04 0.81 0.05
Regime intermediatet 0.08  0.07 0.76

Table 5.2: Matrix of the correct cross-classification rates between the three flow regimes
using the GDHM filter (split coefficients) with added white noise standard deviation equal
to 0.05.

Let the set of scaled coefficients be denoted{By,, . .. ,0%:}. Then the mean at each
resolution and location of the set of scaled coefficients can be used to represent the activity

measure

1 p
==Y 0%.
px:l

5.5.4 Results

The best performance was obtained by using the split coefficient transform. The activity
measures for the modulus and scaled versions of the multiwavelet coefficients were
unstable and the resulting models performed poorly. For this reason, only the correct
classification rates using the split coefficients using the GDHM and Donovan filter are

reported in Tablep 5.2 and 5.3 respectively. Figuré 5.8 shows the correct classifiaction
rates for the GDHM and Donovan filters. This shows that the GDHM filter performs

better, yet both curves decrease steadily as the noise standard deviation increases.
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True Flow Regime

bubble churn intermediate

Predicted bubble| 0.67  0.08 0.19
Flow churn| 0.10 0.80 0.07
Regime intermediatet 0.23  0.12 0.74

Table 5.3: Matrix of the correct cross-classification rates between the three flow regimes
using the Donovan filter (split coefficients) with added white noise standard deviation

equal to 0.05.

5.6 Multiwavelet thresholding

5.6.1 Introduction

In Chaptef #, thresholding was shown to increase the correct classification rate when the
amplitude of the noise was less than the signal present in the test data. It was therefore
proposed that a multiwavelet thresholding technique may improve the classification

results.

Downie and Silverman (1998) introduced the concept of thresholding in a multiwavelet
setting. They showed that for abh—dimensional wavelet basis, a transform of the
coefficients of pure noise would havea distribution. A threshold for the transformed

coefficients can then be determined from this distribution.

The transform of the multivavelet coefficient used in the thresholding rut,is=
DLV ' Dj, whereD;, areL-vector coefficients. As mentioned above, it has been shown
that when considering the multiwavelet transform of pure n@ﬁew X% . IDownie and
Silverman|(1998) give a multivariate universal threshold, which is used later. This has the
form:

A2 = 2log(n) + (L — 2)loglog(n).
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Figure 5.8: Correct classification rates of models built using the split coefficients.

The estimation of the covariance matiik will then determine the orientation of the

ellipse shown in Figurg 5.9.

Hard multiwavelet thresholding

Looking at Figuré 59, hard thresholding would mean that all coefficients outside of the

ellipse are maintained, whilst all those inside are shrunk to zero.

0 ifO <A\

Djk* = _
Djk if ij >\
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Figure 5.9: Diagram to show how a two dimensional wavelet coefficient would be

transformed by thresholding.

Soft multiwavelet thresholding

For soft thresholding, all coefficients inside the ellipse are still shrunk to zero. However, in
this case all the coefficients outside the ellipse have their modulus reduced by an amount
equal to the radius of the ellipse along the coefficient vector. In the two dimensional case,

this would mean that the poibtwould be mapped to the poibt.

0 |f9]k</\

Djk* = 2 2
(6%, —X%) .
Dje—z— if 0 > A

5.6.2 Application to tomographic classification

The multinomial modelling process described earlier in this Chapter was used again
to allow comparison between cases. The GDHM filter was used this time, since this
performed better in the non-thresholded simulations. The thresholding methods were

applied to the multiwavelet coefficients obtained from the MWT, before calculating the
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True Flow Regime

bubble churn intermediate

Predicted bubble| 0.38 0.24 0.30
Flow churn| 041 0.31 0.43
Regime intermediatet 0.21  0.45 0.27

Table 5.4: Correct cross-classification rates using the hard thresholded split coefficient

and the GDHM filter with added white noise standard deviation equal to 0.05.

True Flow Regime

bubble churn intermediate

Predicted bubble| 0.22 0.26 0.33
Flow churn| 0.21 0.35 0.39
Regime intermediate 0.39  0.12 0.28

Table 5.5: Correct cross-classification rates between the flow regimes using the soft
thresholded split coefficients and the GDHM filter with added white noise standard

deviation equal to 0.05.

activity measures. The correct classification rates of the different transfer functions show

that thresholding has less affect on the prediction rates than in the scalar case.

The reason for this poor performance could be related to the way in which the multiple
series are used. Downie and Silveriman (1998) noted that multiwavelet thresholding gives
poor results when the identity prefilter is used. The problem is that if a signal component
is present at a particular time-frequency it may be represented in one element of the
coefficient vector . This means that noise in the other elements will not be removed since
the thresholding technique takes account of the whole vector. As the series considered

here are highly correlated with each other, a similar issue may arise.

The Thresholded model performed much worse than the non-thresholded version in terms
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of being able to correctly classify the flow regimes. This can be seen by comparing Tables
[5.4 and 5. to the TabJe 5.2 in the previous section.

5.7 Conclusions

It was hoped that the multidimensional frequency-time decomposition offered by the
multiwavelet transform would improve on the frequency modelling methods used in
Chapter§[3 arfd 4. However, the application to these two modelling scenarios have resulted

in varying degrees of success.

For the seismic modelling, this new approach was able to reduce the mean squared error
of the acoustic impedance reconstruction by naturally incorporating neighbouring traces
into the model. The MSE was reduced to 0.67 from a minimum of 1.11 using scalar
wavelets. The way in which the multiwavelet coefficients are incorporated into the model
was an important factor in determining the success. Only the split coefficient method,

using the GDHM filter resulted in an improvement.

In the tomographic modelling attempt, all methods performed less successfully than the
scalar counterpart. Again, the GDHM filter performed better than the Donovan filter. This
could be due to the symmetric/antisymmetric property, which the Donovan filter does not
possess. The way in which the activity measures were calculated meant that some of the

model were unstable, classifying no better than random.

This instability with regard to the way the multiwavelet coefficients are transformed would

be interesting to investigate if further time were available.

In addition, the implementation of higher dimensional multiwavelet filters could prove to

be more successful on higher dimensional datasets, as in the tomographic example.
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Chapter 6

Conclusions and further work

The main theme of this thesis has been to consider the wavelet transform as a method of
exploiting frequency characteristics that occur in some naturally occurring processes. In
particular, we have looked at situations were the processes involve multiple observed
series and have attempted to combine these observations in the process of building

predictive models.

In Chaptef B, we considered the modelling of a seismic dataset. Using a non-decimated
wavelet transformation to exploit the frequency characteristics of the data proved useful
in building a predictive model. It was found that transforming the wavelet coefficients
using atransfer function which exploited these frequency characteristics improved the

reconstructive ability of the models.

It would be interesting to investigate the power of these methods on a real seismic study.
However, as an initial known truth is required to build models in the way proposed, such

datasets are hard to acquire.

In Chapteff # we investigated how the localised time-frequency representation achieved
by using the wavelet coefficients could be used to classify tomographic flow regimes.

The introduction of the transfer function in the application allowed multiple series to be
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combined to explain the frequency characteristics across all of the series. This proved
a useful measure in predicting flow regimes using logistic and multinomial regression

methods.

Chaptef b looked at the application of multiwavelet bases to frequency modelling. To
achieve this the non-decimated version of the multiwavelet transform was used with two
and three dimensional bases. This allowed multiple series to be combined during the
wavelet decomposition. This technique was used in the same applications as in Chapters
and 4 to see if this improved on the scalar wavelet efforts. In the seismic case, a two
dimensional filter was able to reduce the reconstruction error over scalar wavelets. When
using the method on tomographic data the best results were obtained from splitting the

coefficients, however this offered no improvement over the scalar wavelet model.

Further investigation could be done into more dimensions of the multiwavelet approach.
In the seismic application, the dimension of filter was chosen so as to include
neighbouring traces in the modelling process. However in the tomography application,
the bases were chosen due to their dimension. It would be of interest to extend the ‘bank’
of multiwavelet filters, as in the tomography setting a seven dimensional filter would have

been of interest, due to the seven sensors in the experimental setup.

In this thesis, primarily the non-decimated wavelet and non-decimated multiwavelet
transforms have been considered. There are several other transforms, such as the wavelet
packet transform, the locally stationary wavelet transform and the complex wavelet
transform. These could be investigated for modelling frequency characteristics in a

similar manner.

Another important application of wavelets is in denoising. We have not considered this
here as it was the underlying frequency property of the noise that we have aimed to
extract. Another angle of modelling data with these characteristics might be to extract
the noise using denoising methods and then model using the denoised dataset alongside

the extracted data.
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