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Abstract
This thesis considers the application of wavelets to problems involving multiple series

of temporal data. Wavelets have proven to be highly effective at extracting frequency

information from data. Their multi-scale nature enables the efficient description of both

transient and long-term signals. Furthermore, only a small number of wavelet coefficients

are needed to describe complicated signals and the wavelet transform is computationally

efficient.

In problems where frequency properties are known to be important, it is proposed that

a modelling approach which attempts to explain the response in terms of a multi-scale

wavelet representation of the explanatory series will be an improvement on standard

regression techniques. The problem with classical regression is that differing frequency

characteristics are not exploited and make the estimates of the model parameters less

stable. The proposed modelling method is presented with application to examples from

seismology and tomography.

In the first part of the thesis, we investigate the use of the non-decimated wavelet transform

in the modelling of data produced from a simulated seismology study. The fact that elastic

waves travel with different velocities in different rock types is exploited and wavelet

models are proposed to avoid the complication of predictions being unstable to small

changes in the input data, that is an inverse problem.

The second part of the thesis uses the non-decimated wavelet transform to model electrical

tomographic data, with the aim of process control. In industrial applications of electrical

tomography, multiple voltages are recorded between electrodes attached to the boundary

of, for example, a pipe. The usual first step of the analysis is then to reconstruct the

conductivity distribution within the pipe. The most commonly used approaches again lead

to inverse problems, and wavelet models are again used here to overcome this difficulty.

We conclude by developing the non-decimated multi-wavelet transform for use in the
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modelling processes and investigate the improvements over scalar wavelets.
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If we knew what we were doing, it wouldn’t be called

research, would it?
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Chapter 1

Introduction

1.1 Motivation

The analysis of temporal data can be complicated when the data have properties that make

the application of the usual time series methods such as ARIMA models introduced by

Box and Jenkins (1976) and spectral analysis Priestley (1981) difficult. An example of

this would be a series lacking stationarity in terms of its mean value or autocovariance

structure over time. Seasonal time series, such as rainfall, are examples of non-stationary

series.

When a process consists of more than one observed time series, the methods for modelling

and investigating the properties get increasingly difficult as the number of series increases.

The idea of a multiscale approach will also prove useful when analysing temporal data

which contains several features, each occurring over different time scales. The example

of analysing environmental data illustrates how this approach may be of benefit. Whilst

climate change might be the cause of temperature increases over decades, season changes

will bring about temperature change throughout the year and consideration of the daily

weather provides a picture at a small scale. The wavelet transform of such a dataset would
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decompose the series into several sub-series, each offering information at a different time

scale.

1.2 Outline of thesis

The thesis begins with an introduction to wavelet methods in Chapter 2. This includes an

overview of the wavelet transform and the performance of some noise estimation methods

is explored.

The new contributions made in this thesis are in developing methods for modelling

situations where signals have changing frequency properties at given points in time, using

wavelet decompositions to transform the underlying signals may allow the frequency

properties to be incorporated into the modelling paradigm. By incorporating what is to

be called a ‘transfer function’, it has been possible to effectively encode the frequency

information.

This thesis considers several situations where the underlying process produces data with

such frequency properties and proposes a framework in each setting to best allow the

properties to be exploited.

Chapter 3 discusses a method of transforming seismic data that allows the varying

frequency properties to be exploited. These are then incorporated into a linear model

to predict acoustic impedance.

Chapter 4 applies wavelet methods to tomographic data modelling. The question of how

to incorporate multiple observations into the modelling framework is investigation.

An extension to wavelet theory, known as multiwavelets is explored in Chapter 5. Here an

alternative method of incorporating many series into a modelling framework is explored

in the seismic and tomographic settings. An overview of the mathematical background to

multiwavelets can be found in Keinert (2004).
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The proposed methods could have possible applications in other data settings which

exhibit similar properties. Examples could include the modelling of customer behaviour

modelling in financial services, where higher frequency activity could indicate a change

in behaviour indicative of either cross selling opportunities or customers leaving.

Environmental data, such as wind speeds or rainfall may also exhibit changing frequencies

due to the different weather systems.

1.3 New developments

The thesis develops new methodology to model series with both frequency and

time characteristics through a combination of wavelet methods and existing statistical

modelling techniques such as linear and logistic regression. The models are built using

processed wavelet coefficients and the proposed method of processing, using a transfer

function (described in Section 3.4), is also a new concept.
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Chapter 2

Literature Review

2.1 Introduction

Wavelets are localised basis functions, with some special mathematical properties which

will be mentioned later in section 2.4. An analogy for how wavelets work is to think

of a camera lens that allows you to take broad landscape pictures as well as zoom in on

microscopic detail that can’t normally be seen by the human eye.

Many applications of wavelets have been developed over recent years and now the

applications range from Biomedical imaging Van der Ville et al. (2006) and microarray

analysis X.H.Wang et al. (2003) to data fusion Fryzlewicz et al. (2007).

A usual starting point to explain how wavelets work is to start with the ideas of Fourier

Theory, which represent functions in terms of a series of sine and cosine functions (having

infinite support).
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2.2 Fourier Analysis

It is known from Fourier theory that a signal can be expressed as the sum of a series

of sines and cosines, known as a Fourier expansion Körner (1996). However, these

methods fail to provide efficient representations for certain types of functions which have

discontinuities.

Definition 2.2.1 A Fourier series is the representation of a function,f , in terms of a sum

of sine and cosine functions

f(x) =
a0

2π
+

1

π

∞∑
n=1

(an cos(nx) + bn sin(nx))

where

an =

2π∫
0

f(x) cos(nx)dx

bn =

2π∫
0

f(x) sin(nx)dx

This representation is possible since{1, cos(nx), sin(nx)} constitutes an orthonormal

basis ofL2([0, 2π]).

Sine and cosines functions (sinusoids) are localised in frequency but not in time, thus a

large number of terms are required to represent a function with a discontinuity in terms of

a Fourier series.

Definition 2.2.2 Let< f, g >=
∫
f(x)g(x)dx denote the inner product of the functions

f andg. The Fourier transform of a functionf ∈ L1(R) is defined by
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f̂(ω) = F[f(ω)]

= < f(x), eiωx >

=

∫
R

f(x)e−iωxdx

If f̂ ∈ L1(R) is the Fourier transform off ∈ L1(R) then

f(x) = F−1[f̂(ω)] =
1

2π

∫
R

f̂(ω)eiωxdω

is the inverse Fourier transform.

The disadvantage of a Fourier expansion is that it has only frequency resolution and no

time resolution. This means that although it is possible to determine all the frequencies

present in a signal, it is not possible to know when they are present. To overcome this

problem wavelets can be used. In order to understand how a wavelet decomposition can

be constructed, the concept of a multiresolution analysis will be introduced.

2.3 Multiresolution Analysis

A multiresolution analysis (MRA) provides a framework for examining functions at

different scales. A multiresolution analysis can be defined following Mallat (1989).

Definition 2.3.1 A multiresolution analysis is a chain of nested closed subspaces,

{Vj, j ∈ Z} satisfying the following conditions:

1. The spaces have trivial intersection:⋂
j∈Z

Vj = {0}.
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2. The union is dense inL2(R): ⋃
j∈Z

Vj = L2(R).

3. The following scale relations exist:

f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1. (2.1)

f(x) ∈ V0 ⇔ f(x− k) ∈ V0, k ∈ Z. (2.2)

4. There exists a functionφ(x) ∈ V0 such that the sequence{φ(x− k), k ∈ Z} is an

orthonormal basis ofV0.

The conditions given in equations 2.1 and 2.2 imply that{φjk, k ∈ Z} is an orthonormal

basis ofVj. SinceV0 ⊂ V1, the functionφ(x) ∈ V0 can be represented as a linear

combination of the functions fromV1 and so

φ(x) =
∑
k∈Z

hk

√
2φ(2x− k),

for some coefficientshk, k ∈ Z, which are often referred to as a low pass filter. The

functionφ(x) is called thefather waveletor scaling function.

For each MRA, it is also possible to define amother wavelet, ψ(x), which will explain

the detail at each levelj. Consider the detail spaceWj to be the orthogonal complement

of Vj in Vj+1, so that

Vj+1 = Vj ⊕Wj.

Then{ψ(x− k), k ∈ Z} forms an orthonormal basis forW0, orthogonal to all functions

in Vj. Sinceψ(x) ∈ V1, the functionψ(x) can similarly be represented as a linear

combination of the functions fromV1.

ψ(x) =
∑
k∈Z

gk

√
2φ(2x− k),
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where the coefficientsgk, k ∈ Z are known as the high pass filter. As a consequence of

the MRA conditions,f(x) ∈ W0 ⇔ f(2jx) ∈ Wj and so{ψjk(x)} is an orthonormal

basis forWj and so

ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z.

2.4 What is a wavelet?

A wavelet is a small localised wave, designed to have attractive properties not enjoyed by

“big waves” such as short support which is not exhibited by the sinusoids.

Wavelets are basis functions which are able to represent a signal in the time and frequency

domain at the same time. They can be used to approximate an underlying trace or signal,

similar to Fourier transforms. The advantages of wavelets are that they are localised in

frequency and time and so can handle a wider range of signals than Fourier analysis.

A disadvantage of wavelets is that the transform obtained only has representations of the

data at a discrete number of resolution levels, each resolution level having a representation

at approximately twice the frequency of the previous level.

A wavelet basis can be formed by translating and dilating a functionψ, called the mother

wavelet.

A mother wavelet may be defined as in Meyer (1992).

Definition 2.4.1 Letm ∈ N. Then forx ∈ R, a functionψ(x) is called a mother wavelet

of orderm if the following properties hold.

1. If m = 0, ψ(x) ∈ L∞(R). If m ≥ 1, thenψ(x) and all its derivatives up to order

m belong toL∞(R).

2. ψ(x) and all its derivatives up to orderm decrease rapidly asx→ ±∞.
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3. For eachk ∈ {0, . . . ,m},
∞∫

−∞

xkψ(x)dx = 0

4. The collection{ψj,k}j,k∈Z forms an orthonormal basis ofL2(R), the ψj,k being

constructed from the mother wavelet using

ψj,k(x) = 2
j
2ψ(2jx− k).

2.5 Examples of wavelet bases

2.5.1 The Haar basis

Probably the simplest wavelet basis is the Haar basis, constructed from following the

scaling function and mother wavelet. A picture of the Haar basis is shown in Figure 2.1.

ψ(x) =

 1 x ∈ (0, 1)

0 x 6∈ (0, 1)
, φ(x) =


1 x ∈ [0, 0.5)

−1 x ∈ [0.5, 1)

0 otherwise

Figure 2.1: Picture of the Haar mother wavelet and scaling function.



Chapter 2. Literature Review 10

2.5.2 The Meyer wavelet

This is thought about in terms of the frequency domain.

ψ̂(x) =


(2π)−

1
2 |x| ≤ 2π

3

(2π)−
1
2 cos

[
π
2
ν
(

3
2π
|x| − 1

)]
2π
3
≤ |w| ≤ 4π

3

0 otherwise

whereν is a smooth function satisfying:

ν(x) =

 0 x ≤ 0

1 x ≥ 1

andν(x) + ν(1− x) = 1. The wavelet is of the form:

ψ̂(x) =
√

2πe
ix
2 [φ̂(x+ 2π) + φ̂(x− 2π)]φ̂

(x
2

)

2.5.3 Daubechies wavelets

Daubechies (1992) introduced two families of compactly supported wavelets, with

different possible degrees of smoothness. These are known as Daubechiesextremal phase

and least asymmetricwavelets. A useful property of compactly supported wavelets is

that the associated filtersH andG, which will be explained in Section 2.6, have a finite

number of coefficients. More details of the construction of these wavelets can be found

in Daubechies (1992) and some examples of Daubechies compactly supported mother

wavelets are shown in Figure 2.2.

Further details of different wavelet bases can be found in Vidakovic (1999) and Percival

and Walden (2000).
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Figure 2.2: Examples of Daubechies compactly supported mother wavelets.
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2.6 The discrete wavelet transform

The discrete wavelet transform (DWT), proposed by Mallat (1989), is an efficient

algorithm for calculating the wavelet coefficients of a discrete series. The idea is to filter

the series, using the high and low pass filters associated with the wavelet basis to obtain

the wavelet coefficients.

The transform can be explained in terms of a low pass filterH = {hk} and a high pass

filter G = {gk}, where thehk andgk are the coefficients of the filters referred to in Section

2.3.

Consider a functionf observed atN = 2J equally spaced time points{ti, i = 0, . . . N −

1}. Let cJ,i = f(ti) for i = 0, . . . , N − 1. The discrete wavelet transform of the series

can be obtained using the relations:

cj−1,i =
∑

n

hn−2icj,n (2.3)

dj−1,i =
∑

n

gn−2icj,n (2.4)

The resulting wavelet transform is the collection of the detail coefficients at each level

together with the smooth or father coefficient at the zero level. This is an orthogonally

transformed representation of the original series of lengthN . The2i term in equations

2.3 and 2.4 is an alternative way of representing the decimation step of the DWT. It is

equivalent to filtering usingH andG and then applying even dyadic decimation (selecting

every even observation from the series).

An alternative way to formulate the DWT is to construct an orthogonal matrixW

associated with the particular wavelet basis being used. The DWT can then be defined

as the matrix multiplication of this orthogonal matrix with a vector of observation points,

x. That is,

d = Wx,
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whered is a vector comprising of both the discrete mother and father wavelet coefficients.

2.6.1 Example of the DWT

Suppose we have a four element sequence

(c2,0, c2,1, c2,2, c2,3) = (4, 12, 6, 24)

and we want to find the wavelet decomposition using the Haar basis. The filters for the

Haar basis are

H = (h0, h1) = (1/
√

2, 1/
√

2), G = (g0, g1) = (1/
√

2,−1/
√

2).

Using Equations 2.3 and 2.4, we obtain

c1,0 = 1/
√

2× 4 + 1/
√

2× 12 = 8
√

2

c1,1 = 1/
√

2× 6 + 1/
√

2× 24 = 15
√

2

d1,0 = 1/
√

2× 4− 1/
√

2× 12 = −4
√

2

d1,1 = 1/
√

2× 6− 1/
√

2× 24 = −9
√

2

At the next resolution level, the coefficients are

c0,0 = 1/
√

2× 8
√

2 + 1/
√

2× 15
√

2 = 23

d0,0 = 1/
√

2× 8
√

2− 1/
√

2× 15
√

2 = −7.

It is possible to reconstruct the original series from the coefficients(c0,0, d0,0, d1,0, d1,1)

using the inverse DWT.

2.6.2 Boundary conditions and wavelets on the interval

The Haar wavelet has very short filters, but for other bases, a problem may occur when the

filters are longer than the input series. Several solutions exist to this problem: the series
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could be considered to repeat periodically; padding with zeroes could increase the length

of the series; polynomial extrapolation could be used. Nason and Silverman (1994) give

more details on the options available.

Meyer (1991) showed how an orthonormal family of wavelets in[0, 1] can be constructed

from any compactly supported wavelet basis of Daubechies (1988). The resulting basis

has the same number of vanishing moments and the same regularity as the original mother

wavelet. An orthonormal basis forL2([0, 1]) can be formed from these functions, together

with the father wavelets as the coarsest scale. Constructing wavelets on the interval in this

way has the disadvantage that in the explicit construction involves diagonalisation of a

matrix and becomes ill conditioned (Cohen et al., 1993).

Cohen et al. (1993) proposed a modification in which the resulting wavelets are derived

from the minimal compactly supported wavelet forR. More recently, Melkemi and

Mokhtari (2007) have developed a general method to construct wavelet bases on an

interval with arbitrary support.

2.7 Inverse wavelet transform

When the wavelet transform is thought of as a matrix multiplication, it is easy to see

that the orthogonal matrixW can be inverted and so the inverse transform can be

found. Computationally, the inverse transform takes the coarsest level father and mother

coefficients and uses them to reconstruct the next finer level. Mathematically this can be

written as

cj,k =
∑

l

hk−2lcj−1,l +
∑

l

gk−2ldj−1,l.

The reconstruction can then be achieved by iterating this process and climbing the

resolution levels back to the original data.
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2.8 Non-decimated wavelet transform

The first application of the non-decimated (or stationary) wavelet transform (NDWT)

to statistical problems was by Nason and Silverman (1995). To compute the NDWT,

appropriate high and low pass filters are applied to the data at each level to produce two

sequences at the next level. No decimation occurs in this transform, so the two sequences

have the same length as the original sequence. Instead, the filters are modified at each

level, by padding out with zeroes.

2.8.1 Setup

Define Operators

1. Let Z be an operator which alternates a given sequence with zeroes, so that

∀j ∈ Z, (Zx)2j = xj and (Zx)2j+1 = 0

2. Let S be the shift operator defined by

(Sx)j = xj+1

3. Let D0 be the binary decimation operator defined by

(D0x)j = x2j

Define filters

DefineH[r] andG[r] to have weightsZrh andZrg respectively. Thus the filterH[r] has the

weightsh[r]

2rj = hj andh[r]
k = 0 if k is not a multiple of2r.
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So H[r] is obtained by inserting a zero between every adjacent pair of elements of the

filter H[r−1], and similarly forG[r].

⇒ H[r] andG[r] commute withS

⇒ Dr
0H

[r] = HDr
0 andDr

0G
[r] = GDr

0

Defining the NDWT

LetaJ be a sequence. Forj = J, J−1, . . . , 1 defineaj−1 = H[J−j]aj andbj−1 = G[J−j]aj.

If aJ is of length2J , then all the vectorsaj and bj will be of the same length, rather

than becoming shorter asj decreases as in the standard DWT. This means that to find

bJ−1, bJ−2, . . . , b0, a0 will take O(J2J) operations rather thanO(2J) as in the decimated

DWT.

2.8.2 Example of the NDWT

Recalling the example from Section 2.6.1, we now find the non-decimated version of the

wavelet transform for this series. To allow the effect on the filters to be seen, dot product

notation is used.

The scaling coefficients{cj,k} are found using periodic boundary conditions from the

following relationships.

c1,0 = (h0, h1) · (c2,0, c2,1)

c1,1 = (h0, h1) · (c2,1, c2,2)

c1,2 = (h0, h1) · (c2,2, c2,3)

c1,3 = (h0, h1) · (c2,2, c2,0)
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The mother wavelet coefficients can be found similarly using the high pass filter,G =

(g0, g1), instead of the low pass.

At the next level, the filters need to padded with alternate zeros before calculating the

coefficients, and so the next level can be calculated as follows.

c0,0 = (h0, 0, h1, 0) · (c1,0, c1,1, c1,2, c1,3)

c0,1 = (h0, 0, h1, 0) · (c1,1, c1,2, c1,3, c1,0)

c0,2 = (h0, 0, h1, 0) · (c1,2, c1,3, c1,0, c1,1)

c0,3 = (h0, 0, h1, 0) · (c1,3, c1,0, c1,1, c1,2).

2.8.3 Numerical example

If we have a sequence similar to the example in Section 2.6.1, the NDWT would be

calculated as (using the Haar basis):

(c2,0, c2,1, c2,2, c2,3) = (4, 12, 6, 24)

.

c1,0 = (
1√
2
,

1√
2
) · (4, 12) = 8

√
2

c1,1 = (
1√
2
,

1√
2
) · (12, 6) = 9

√
2

c1,2 = (
1√
2
,

1√
2
) · (6, 24) = 15

√
2

c1,3 = (
1√
2
,

1√
2
) · (24, 4) = 14

√
2
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The next level of coefficients can then be found.

c0,0 = (
1√
2
, 0,

1√
2
, 0) · (8

√
2, 9

√
2, 15

√
2, 14

√
2) = 23

c0,1 = (
1√
2
, 0,

1√
2
, 0) · (9

√
2, 15

√
2, 14

√
2, 8

√
2) = 23

c0,2 = (
1√
2
, 0,

1√
2
, 0) · (15

√
2, 14

√
2, 8

√
2, 9

√
2) = 23

c0,3 = (
1√
2
, 0,

1√
2
, 0) · (14

√
2, 8

√
2, 9

√
2, 15

√
2) = 23.

2.8.4 Relation with the DWT

The stationary wavelet transform contains all the coefficients of the decimated wavelet

transform. The stationary wavelet transform ’fills in the gaps’ between the coefficients in

a decimated DWT and so there is no longer any restriction of the localization position to

a grid of integers.

2.8.5 Example of the NDWT as an exploratory method

In this example, the Doppler test signal (Figure 2.3(a)), as discussed in Section 2.9.3 is

used. This signal has varying frequency, from high to low along the time axis.

The standard wavelet transform of this signal (Figure 2.3(b)) shows this at the finer

resolution levels. The stationary wavelet transform, shown in Figure 2.3(c), also

highlights the decreasing frequency. Asx increases, the amplitude of the oscillation

within the higher frequency levels decreases.
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(a) Doppler test signal

(b) Decimated (c) Non decimated

Figure 2.3: Wavelet decompositions of the Doppler test signal using the Daubechies

extremal phase wavelet with 2 vanishing moments.
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2.9 Thresholding

Wavelet methods are often used in the non-parametric regression setting, where the

problem is of the form:

yi = g(ti) + εi

whereti = (i− 1)/N , i = 1, . . . , N andεi
iid∼ N(0, σ2).

How can we recover the functiong from the datayi without assuming any particular

parametric structure forg? One answer, introduced by Donoho and Johnstone (1994), is

through wavelet thresholding.

The process involved in thresholding is to take the wavelet decomposition of the data

{yi}. An attempt is then made to identify which of the wavelet coefficients obtained are

representing noise and these coefficients are modified according to a thresholding rule in

an attempt to remove the noise from the signal. Finally, the inverse wavelet transform is

applied to the modified coefficients to obtain an estimate ofg.

2.9.1 Hard and soft thresholding

Hard thresholding rules transform all the coefficients regarded as negligible (i.e., those

satisfying |djk| < λ ) to 0, keeping all other coefficients at their original value. The

thresholding rule is expressed as:

d̂jk = d∗jkI (|d∗jk| > λ)

Soft thresholding rules transform some of the smaller coefficients to 0, and translates the

rest towards 0. It is easily expressed by the following equation:

d̂jk = sgn(d∗jk) max(0, |d̂jk| − λ)
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Hard threshold is a ‘keep or kill’ procedure and is more intuitively appealing. The

alternative, soft thresholding, shrinks coefficients above the threshold in absolute

value. While at first sight hard thresholding may seem to be natural, the continuity

of soft thresholding has some advantages, one of which is that it makes algorithms

mathematically more tractable (Donoho and Johnstone, 1995). Sometimes, pure

noise coefficients may pass the hard threshold and appear as ‘blips’ in the output.

Soft thresholding shrinks these false structures. In terms of image de-noising, hard

thresholding maintains the sharp edges of the image, whereas soft thresholding tends

to blur the image. However, soft thresholding does usually result in reconstructions with

lower mean squared error.

Figure 2.4: Comparison of hard and soft thresholding.

There are alternatives to hard and soft thresholding in the form of localised, context-

based thresholding. Ghazel et al. (2005) show that the performance of thresholding can



Chapter 2. Literature Review 22

be improved using such techniques.

2.9.2 How do you choose a threshold?

Many different schemes have been proposed for choosing the threshold,λ. Abramovich

et al. (2000) and Vidakovic (1999) give a review of some of these. We give a brief

description of some of the standard thresholding rules.

Universal thresholding

The universal threshold was proposed by Donoho and Johnstone (1994). It is given by

λuniversal= σ
√

2 logN,

where the value ofσ will usually be unknown and therefore estimated from the data.

BayesThresh

The BayesThresh method (Abramovich et al., 1998) tries to estimate the ‘large’

coefficients and set the others equal to zero. This is achieved by assuming that the wavelet

coefficients,djk, have the following prior distribution:

djk ∼ πjN(0, τ 2
j ) + (1− πj) δ(0) (2.5)

where0 ≤ πj ≤ 1, δ(0) is a point mass at0 and thedjk’s are independent.

The model is specified in terms of the hyperparametersτ andπ, with these parameters

themselves having the following representation in terms of two user selected inputs,α

andβ:

τ 2
j = 2−αjC1

πj = min(1, 2−βjC2)
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whereC1 andC2 are constants chosen empirically from the data.

Abramovich et al. (1998) show that the choices ofα andβ are equivalent to selecting

particular prior distribution to incorporate prior knowledge about the smoothness of the

underlying function. Chipman and Wolfson (1999) also discuss the interpretation ofα

andβ.

The implementation of the BayesThresh method (Barber et al., 2002) specifies the prior

model in terms of the parametersα andβ, calculating the constantsC1 andC2, from the

data.

The prior specification then assumes a non-informative prior for the scaling coefficient

c0,0, which has the posterior distributionN(c∗0,0, σ
2), and is estimated by the observed

valuec∗0,0.

The resulting posterior distribution ofdjk given an observed value ofd∗jk is independent

for eachjk and is given by

djk|d∗jk ∼ ωjkN(d∗jkr
2
j , σ

2r2
j ) + (1− ωj)δ(0)

whereωjk = 1/(1− ξjk) with

ξjk =
1− πj

πj

√
τ 2
j + σ2

σ
exp

−τ 2
j d

∗
jk

2σ2(τ 2
j + σ2)

andr2
j = τ 2

j /(σ
2 + τ 2

j ).

SURE

This method of estimating the threshold was proposed by Donoho and Johnstone (1995)

and is based upon the minimisation of Stein’s unbiased risk estimator. The wavelet

coefficients at each level are considered separately as independent multivariate normal
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estimation problems. Stein (1981) showed that an unbiased estimator of the risk is

SURE(λj, djk) = N − 2
N∑

k=1

I (|djk| ≤ λj) +
N∑

k=1

min(|djk|, λ)2

and so the SURE threshold can be written as

λj,sure= argmin0≤λ≤
√

2 log N SURE(λj, djk).

2.9.3 Estimating the noise standard deviation,σ

There are several competing methods of estimating the noise standard deviation for use

in calculating the universal threshold. Donoho and Johnstone (1994) suggest thatσ can

be estimated using the median absolute deviation of the finest level wavelet coefficients

divided by 0.6745. This constant is the median of the absolute values of a standard normal

variable and so makes the estimate unbiased under the assumption,d(J−1) ∼ N(0, 1).

σ̂mad=
median

[
|d(J−1) − median

(
d(J−1)

)
|
]

0.6745

An alternative method for estimatingσ is using the sample standard deviation of the

wavelets at the finest resolution level.

σ̂sd =

√
1

n
2
− 1

Σ
n/2
i=1

[
d

(J−1)
i − d̄i

(J−1)
]2

A small simulation study was carried out to investigate the appropriateness of these two

methods.

Comparison of different noise estimation methods

Simulations were carried out with 100 repetitions of 100 values of signal to noise ratio,

ranging from 0.1 to 1, corresponding to noise standard deviation1 to 0.1. The signal to
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Figure 2.5: The test signals of Donoho and Johnstone (1994).

noise ratio is defined as the reciprocal of the noise standard deviation and in the simulation

a signal to noise ratio of 1 corresponds to equal strength of noise and signal. The test

signals of Donoho and Johnstone (1994) (see figure 2.5) were used with length1024 =

210.

Various factors which could influence the quality of the noise standard deviation estimate

were identified. These were:

• The form of the estimate used. Here the MAD and the standard deviation of the

wavelet coefficients are compared.
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• The test signal itself: a discontinuous signal with relatively large jumps may cause

the noise standard deviation to be overestimated; a high frequency signal may make

the noise estimation difficult if it results in coefficients representing signal at the

finer resolution level.

• The signal to noise ratio.

• The wavelet transform used — decimated and non-decimated transforms are

investigated.

• The wavelet filter used.

• The resolution level of the wavelet coefficients used in the noise estimation.

To investigate the effect of filter choice, several different filters were used, but the noise

estimation appeared robust to the actual filter. For this reason, only the results using

the Daubechies Extremal Phase basis with 10 vanishing moments are reported. The

estimates using the finest resolution level coefficients are considered, as noise will be

more prominent at the finer resolution levels.

The results for the signal to noise ratio of 0.1 are shown in Table 2.1. This shows that

the standard deviation estimate performs better than the MAD estimate for all signals and

signal to noise ratios. The biggest differences are observed in the doppler signal when

using the decimated transform and the heavi signal for the non-decimated transform.

Figure 2.6 shows examples of how the AMSE varies depending upon the SNR for these

two signals. It can be seen that the standard deviation method for noise estimation appears

to consistently outperform the MAD estimate.
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Test Signal

Blocks Bumps Heavi Doppler

DWT
MAD AMSE 0.254 0.254 0.285 0.226

SD AMSE 0.101 0.101 0.001 0.087

NDWT
MAD AMSE 0.191 0.210 0.191 0.230

SD AMSE 0.099 0.095 0.093 0.100

Table 2.1: Average mean squared error of the noise estimates using the different methods.
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(a) DWT - doppler signal

(b) NDWT - heavi signal

Figure 2.6: AMSE of noise estimates for different signal to noise ratios.



29

Chapter 3

Modelling Seismic Data

3.1 Introduction

3.1.1 Seismic methodology

Seismic methods are used in the geophysical sciences to explore the composition of

underlying rock. These methods utilise the fact that elastic waves travel with different

velocities in different rock types, depending on the density of the rock. There are a broad

range of seismic applications — ranging from building site investigations and surface

environmental studies, to oil and gas exploration, even to detection of water-bearing

fracture zones and long-period earthquake seismology.

A reflection seismic setup is considered, as shown in Figure 3.1. The data images in

this situation consist of adjacent time series indicating the arrival of sound waves at the

geophones, which have been artificially generated from a source, such as a controlled

explosion or a sledge hammer. These waves will have been reflected from the interfaces

between rock formations with differing physical properties. A key property is the density

of the rock through which the sound waves have travelled and this is the property we shall
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concentrate on modelling. These traces will provide some insight into the underground

structure, with strong reflection events indicating boundaries between rock formations.

Some simulated data of this setup will be used in Section 3.3.1 to build a model to predict

the underground composition from such traces.

Figure 3.1: Example of reflection seismic setup.

Estimation of the rock density from seismic data often results in an inverse problem,

where the solution is unstable to small changes in the data. It is expected that the use of

wavelet methods will prove to be useful in avoiding such problems and provide a more

reliable rock density reconstruction. See Stein and Wysession (2002) for more details

relating to seismic methods.

3.1.2 Properties of the observed signals

There are two main ways in which the composition of underground rock can vary. These

can be described as either smooth or sharp changes.

• Smooth changes– associated with processes such as compaction, which will

produce natural variation in the signal within a rock type. These would represent
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low frequency changes in the rock properties.

• Sharp changes– these usually occur as the depth of observation is increasing, that

is in the vertical direction, and are associated with changes in rock type. The sharp

changes in features are what give rise to the reflections and diffractions that are

observable in seismic traces. At a sharp change point, the rock properties would

change with a higher frequency.

As each of these component changes will be inherent in a seismic trace dataset, the

associated seismic traces will have both low and high frequency properties varying over

time. It is hope that through the use of wavelet methods, these can be exploited to improve

the estimation of the underground lithology.

3.2 Data simulation

3.2.1 Overview

The simulated data was produced from the starting point of a supposed ‘known truth’

about the geological makeup of an area. This was then convolved with the Ricker

transform, which is defined in Section 3.2.2, and a noise process introduced into the

observations.

The ‘known truth’ was a(256 × 256) dataset, consisting of 256 different observation

points along a straight line on the surface. From each of these observation points, the

sound trace was recorded over time, representing depth below the point, for 256 time

points. A diagram to show the setup is shown in Figure 3.2. We assume there are two

clear boundaries dividing rock of differing densities. The pattern is less clear from the

simulated data and there is no simple way to map the observations to give an interpretable

‘truth’.
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An diagram to illustrate the various stages of the data simulation process can be seen in

Figure 3.3.

Figure 3.2: Diagram of the simulation setup.

3.2.2 A model for seismic data

A common model used in seismology is that of stacked layers of differing rock types, each

with a characteristic density and acoustic velocity. The acoustic impedance, denoted by

Z, of the substance is modelled as the product of this characteristic density and acoustic

velocity. It is further assumed that different substances carry signals at a characteristic

frequency, proportional to the acoustic impedance. The acoustic impedance is given by

Z = ρV + ε (3.1)

whereρ is density,V is the acoustic velocity of the material andε is an error term.

Where there is an interface of different materials, the reflected and refracted amplitudes

can be found using a simple expression. The reflection coefficient,c, relates incident
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Figure 3.3: Data simulation process.

and reflected trace amplitudes measured in units of pressure. This reflection coefficient is

found using the following equation

c =
Z2 − Z1

Z2 + Z1

whereZ1 andZ2 are the acoustic impedances for layer 1 and 2 respectively.

The model of recorded seismic data is built by the product of a waveform, which is

often taken to be the Ricker or Mexican hat wavelet, with the reflection coefficient series

(Robinson and Treitel, 1980). The series of reflection coefficients represents the depth

reflections of the material, in the sense that the series will have a spike when the boundary

of two substances is reached.

The Ricker wavelet is defined as the second derivative of a Gaussian distribution with zero

mean and variance1/τ 2, whereτ is related to the dominant frequency of the wavelet. This

can be written as

ψ(x) = (1− τ 2x2) exp
−τ2x2

2 .
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3.2.3 The discrete convolution model

The discrete convolution model (Robinson and Treitel, 1980) can be written as

X = ψ ⊗ c+ ν

whereX represents the seismic data,⊗ represents a convolution andε is Gaussian white

noise.

Inherent in the calculation of the acoustic impedance,c, is an error structure determined

by the nature of theε term from equation 3.1. As the true values ofZ are assumed to be

known, this error is usually modelled directly as an additive error termν. The structure

of the noise termν can be broken down into two components:

ν = νcor + νwn (3.2)

The first component,νcor, represents correlated noise of a frequency proportional to the

acoustic impedance of the material, which is considered in Section 3.2.4. The second

component,νwn, is white noise representing measurement error.

To illustrate the simulation process, figure 3.4 shows the simulation withνcov = 0 and

νwn ∼ N(0, σ2), with σ = 1. Figure 3.5 shows the simulation withν as described in

equation 3.2, adding correlated and white noise to the acoustic impedance values. This

simulation process was repeated 256 times to obtain a two dimensional simulated dataset.

Comparing Figures 3.4 and 3.5, it can be seen that when correlated noise is added (as

generated in Section 3.2.4), the underlying structure of the reflectivity coefficients and

hence the synthetic trace become much more erratic.
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Figure 3.4: (a) Acoustic impedance, (b) Reflection coefficient, (c) Synthetic trace.

3.2.4 Non Gaussian noise processes

Motivation

Noise of a Gaussian nature as considered in section 3.2.3 is a common simplification

used when studying seismic processes. It is often assumed that the correlation effects

of the signal will be minimal compared to the underlying signal. Zerva and Zhang

(1997) have noted that the correlation of the noise process will be affected by the true

composition of the underlying rock. For this reason, it is proposed that a noise process

with correlation varying with the acoustic impedance of the rock would more accurately

simulate a real process. To introduce a varying correlation in the noise process the model,

the noise process was simulated from an auto normal process as described in Aykroyd

et al. (1996). This process will introduce horizontal as well as vertical correlation into the

data simulation process.

A first order neighbourhood will be used in the simulation, which is where the neighbours

of the sitei are the four orthogonally adjacent sites, as in Table 3.1.
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Figure 3.5: (a) Acoustic impedance, (b) Reflection coefficient, (c) Synthetic trace.

u′

v xi v′

u

Table 3.1: First order neighbourhood.

Let S be the set of neighbours of pointxi. The auto normal model can now be generated

under the assumption that the probability structure at the pointxi depends only on

contributions from the neighbouring sites. The noise simulation will sample from an

auto Normal distribution, meaning that the parameters of the distribution sampled atxi

will depend on the values at each of its neighbours inS.

The underlying truth in the following simulations is a sequence of measurements taken at

256 adjacent points along a surface line, each recording 256 time points. All of the traces

have a similar structure to that shown in Figure 3.6 (a). The data set is therefore a matrix

Z with 256 rows and 256 columns. This truth was then corrupted by auto normal noise

generated via a Gibbs sampler.
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Gibbs sampler

Gibbs sampling is an MCMC method which uses an iterative approach to sampling from

a probability distribution. The scheme in this case, with periodic boundary conditions and

a first order neighbourhood, can be described as:

• Pick a starting matrixZ0
256×256 = (z0

1, z
0
2, . . . , z

0
256).

• Simulate a new value for each pixel from the conditional distributions, such as

Z1
1,1 from p(Z1,1|Z0

1,2,Z
0
1,256,Z

0
2,1,Z

0
256,1)

Z1
1,2 from p(Z1,2|Z0

1,3,Z
0
1,1,Z

0
2,2,Z

0
256,2).

• The matrix is updated using similar conditional distribution for all possible vertical

sweeps followed by a full set of horizontal sweeps to produce one full iteration to

Z1. The conditional distribution in each case will be:

For vertical sweeps,

Zt+1
x,y from p(Zx,y|Zt+1

x,y−1,Z
t
x,y+1,Z

t
x+1,y,Z

t
x−1,y)

and for horizontal sweeps,

Zt+1
x,y from p(Zx,y|Zt

x,y−1,Z
t
x,y+1,Z

t+1
x+1,y,Z

t
x−1,y)

where the values of(x − 1), (y − 1), (y + 1) and(x + 1) are given in mod 256 to

enforce periodic boundary conditions.

Since the distribution is Auto Normal,

Zx,y|Zδ ∼ N(a, bσ2)

wherea = Z̄δ, b andσ are constants set equal to 1 in the simulation.
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A set of 256 vertical sweeps followed by 256 horizontal sweeps will complete the

transition fromZ0 → Z1.

This is repeated for an initial ‘burn-in’ period, in this case chosen to be 50 iterations,

with the originali = 1, . . . , 49 values forZi being discarded. The convergence of the

simulation was monitored over the iterations to ensure a sensible estimate for the acoustic

impedance truth was obtained. Further details on convergence can be found in Green and

Han (1992).

3.2.5 Diagnostics of simulated data

Figure 3.6(a) shows a sample acoustic impedance series with auto normal noise added as

described in Section 3.2.4 above. Figure 3.6(b) is the wavelet decomposition of this series

and shows that there is different activity in the central region of the Depth detectable at

resolution levels 4,5 and 6.

This data will then be input into the deconvolution model to create a set of example

recorded traces, which can then be used in the model building process.

3.3 Modelling method

3.3.1 Modelling framework

The data contains a noise process with varying frequency properties and so a wavelet

approach will be used to model the known truth. This will then be applied to data with a

different structure to test the models predictive power and to assess if the model is over

fitted.

The underlying signal is a time series of 256 observations of a synthetic trace. It is also
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Figure 3.6: (a) Example of simulated acoustic impedance trace and (b) its wavelet

decomposition using the NDWT DaubEx(2).

assumed that the underlying truth is known for one of the traces, practically this could be

obtained by digging a bore hole down, after observing the trace. The initial modelling

framework is:

• take the wavelet decomposition of the synthetic trace using a wavelet basis with

short support, here the Daubechies Extremal Phase basis with 2 vanishing moments

is used.

• pre-process the wavelet coefficients using some suitable function, thetransfer

function, which will be explained further in Section 3.4.

• build a linear regression model using the known acoustic impedance truth as

the dependent variable, with the processed wavelet coefficients as explanatory

variables.
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Figure 3.7: Overview of the modelling process.

3.3.2 Prediction

The model can now be used to predict the values of the true acoustic impedance from the

realisations of the synthetic trace. For each predicted point, a100(1 − α)% confidence

interval for the fitted value will be given by

Ẑ − t(α
2

,n−2) × sefit < Z < Ẑ + t(α
2

,n−2) × sefit

wheret(α
2

,n−2) is theα
2
th quantile of thet distribution with(n− 2) degrees of freedom,n

is the number of observations andsefit is the standard error of the fit. This will produce a

point wise confidence interval.

As shown in Figure 3.4, the synthetic trace is the final result of a multi-stage simulation

process, which starts with the acoustic impedance, then adds a correlated noise process,
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the reflectivity coefficients are then found and finally the trace is obtained after

convolution with a Ricker function.

3.3.3 Deconvolution

The convolution in the data simulation process in effect takes a snapshot of the data at

one particular frequency, that of the Ricker function used in the convolution step. This

is in effect destroying the multi-frequency nature of the data that it was hoped the model

would exploit. To reconstruct some of this information, an attempt to deconvolve the data

was made.

The method for the deconvolution was to undo the convolution using a best guess at the

actual filter frequency. The actual frequency used in the data simulation was 50 Hz. A

range of filter frequencies was investigated and the effects on the reflectivity coefficients

and then the resulting predictions are shown in Figure 3.8. The graphs show that the error

in the prediction from the model is flat across all the frequencies investigated. This means

that the model is relatively robust to the gaps in the knowledge about the convolution

frequency and an estimate of this frequency will prove adequate. It can also be seen from

the graph that the errors in the reflectivity coefficients is at a comparable level if your

guess at the actual frequency is within±20Hz of the true frequency.

In practice, estimating the frequency of the deconvolution filter should not pose a problem

since this should be known from the initial experimental setup and the apparatus used.

However, for use in data processing without the knowledge of the exact frequency

originally used, the modelling methods are robust to the choice of deconvolution filter.

Accuracy of reconstructing the reflectivity coefficients

The black circular points in Figure 3.8 show the average mean squared error (AMSE) of

the reconstructions over 256 realisations. The frequency of the Ricker wavelet used in the
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Figure 3.8: Comparison of the errors for unknown filter frequency.

simulation process was 50 Hz, and so the range of investigation was extended to 20 to 80

Hz. The AMSE can be seen to be minimised when the deconvolution filter frequency was

also 50Hz, where a perfect reconstruction was possible.

To investigate how the final reconstructions are affected by error in the deconcolution

frequency, the running median transfer function was used to build a wavelet model, this

choice will be explained in Section 3.4. The triangular points show the AMSE of the

acoustic impedance reconstructions using the regression model. It can be seen that the

deconvolution filter frequency has little effect on the predictive success of the model when

the value used is within±20Hz of the true value. Outside this range, as the goal of the
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model is to minimise the reconstruction error, it would appear that ‘guessing’ a lower

value for the filter frequency would give better results.

Effect of deconvolution on prediction

After deconvolving the data, the error in the prediction is decreased with the mean squared

error of reconstruction reducing from 4.32 to 2.34.

It appears as though undergoing some sort of deconvolution process, regardless of the

frequency of the filter used, reinstated some of the localised behaviour and frequency

shifts that it was hoped the wavelet modelling approach would be able to exploit.

The results from the previous section suggest that knowing the precise frequency for

deconvolution is not essential, therefore it is possible to deconvolve initially in practise

when the true frequency is not known.

Figure 3.9: Reconstructions using: (a) the raw data; (b) a deconvolved version of the data.
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3.4 Transfer function choice

The wavelet coefficients require some pre-processing in order to exploit the desired

properties of the data. This is achieved by applying a transfer function to the wavelet

coefficients before the model building stage. The transfer function will:

• be specific to the particular setting and nature of the data.

• be related to the structure observed in the wavelet decomposition.

• encode the features of interest.

• identify these characteristics with the response variable.

There will be many possible choices for the transfer function and it is possible that

alternatives will produce vastly different results.

3.4.1 Suggested transfer functions

There are several possible transfer functions which could be used. Some of these are:

• Identity function, that is using the raw coefficients,{djk}.

• Moving average of the wavelet coefficients of lengtha, that is

1

a

a∑
l=1

dj,k∗ where k∗ = (k + 1− l) mod256.

• Running median with windowl, that is

median(dj,k, . . . , dj,k∗) with k∗ as defined above.

• Absolute value ,{|djk|}.
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There are other signal filters in the literature that could be used in this time-domain

setting. An example of such a filter is the Butterworth filter (Butterworth, 1930) which is

designed to have a frequency response which is as flat as possible. Another example is

the Chebyshev filter which minimises the error between the idealised filter characteristics

and the actual over the range of the filter. Further details can be found in Williams and

Taylor (1995) and Oppenheim and Schafer (1999).

3.4.2 Diagnostics of data to motivate transfer function

Figure 3.10 shows the observable patterns in the wavelet coefficients for each of the

different transfer functions suggested in Section 3.4.1. From these initial plots it can

be seen that, at resolution levels 3,4 and 5, all of the resulting coefficients pick up the

differences in the trace in the central region of the Time dimension, where the acoustic

impedance is higher. At the finer resolution levels, the difference is less noticeable.

Looking at Figure 3.10 (c), a reduction in the magnitude of the coefficients in this central

region is more observable than with the other suggested transfer functions.

3.5 Application of the proposed method

The modelling method described in section 3.3.1 was applied to the simulated data set.

The reconstruction was compared after using several choices of transfer function and the

results are shown in figure 3.11.

3.5.1 Sample reconstructions

The running median transfer function was chosen for the seismic model due to the

better performance of the resulting model in terms of the mean squared error of the
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Figure 3.10: Plots of the transformed wavelet coefficients: (a) Identity, (b) Moving

average with window 5, (c) Running median with window 5 and (d)Absolute value.

reconstructions. The resulting reconstructions of other transfer functions can be seen

below in Table 3.2.

3.5.2 Application to different simulated data

All of the datasets used so far have been a simple set up with the acoustic impedance

starting low for 80 time points, getting high for a period of 125 time points, before

returning to the initial low value. It was originally assumed that the cross section along
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Figure 3.11: Reconstruction using different transfer functions: (a) Identity, (b)Moving

average, (c)Running median and (d)Absolute value.

the line of interest would have a uniform configuration of rock types.

The next stage in testing the model performance was to demonstrate that it did not require

this exact structure in order to be able to provide reasonable predictions. The structure

was changed to have non-linear boundaries between rock types along the investigated

region.

Figure 3.12 shows the noisy truth of the new dataset, with some examples of the acoustic

impedance traces along the surface. This different structure means that the periodic
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Transfer function MSE

Identity 2.61

Moving average 2.90

Running median 2.34

Absolute value 11.60

Table 3.2: Mean squared error of the reconstructions.

Figure 3.12: (a)image of an alternative256 × 256 simulated truth, with non-linear rock

type boundaries (b) and (c) are two acoustic impedance examples from this simulated set.

boundary conditions used in the wavelet decomposition may be more questionable. Figure

3.14 shows that the modelling method still appears to work, with the reconstruction MSE

of 3.08 being slightly higher than for the previous dataset.

3.6 Incorporating neighbouring traces

In geological applications, it is often noted that adjacent traces have similar acoustic

impedance patterns. It was considered that the traces obtained from the two neighbouring

sites may improve the predictions obtained from the model. The idea behind
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Figure 3.13: Stationary wavelet transform of the sample truths from Figure 3.12 (b) and

(c) respectively using Daubechies Extremal Phase basis with 2 vanishing moments.

introducing neighbouring traces into the model was to investigate whether information for

surrounding points would improve the predictions. This was particularly of interest when

there was an underlying trend in the acoustic impedance boundaries, as is the case in the

alternative dataset which has a gradual increase in the depth of the acoustic impedance

boundaries. From a practical point, geophysical exploration is usually carried out on a

grid and incorporating neighbouring traces would further increase the model’s flexibility.

Consider the set of deconvolved noisy simulated reflectivity coefficients,Z =

(Z1, . . . , Z256), with each of the recorded traces being of length 256, generated to

represent an underlying true acoustic impedance structure,X = (X1, . . . , X256). Let

the wavelet coefficients of each of theZi be denoted by{di
jk}, then for each value

of i = 1, . . . , 256, there is a corresponding set of wavelet coefficients{di
jk}, with

j = 1, . . . , 8 andk = 1, . . . , 256.

The chosen transfer function, the running median with window length 5, is then applied

to each of the{di
jk} and these processed coefficients will be denoted by{d̃i

jk}.

The underlying truth for the one of the locations along the line of interest,Xp, is assumed
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Figure 3.14: (a)Representative reconstruction of the alternative dataset (b)Mean

reconstruction of the whole image.

to be known and a linear regression model can then be built using the processed wavelet

coefficient series as explanatory variables. This produces a set ofk observations of each

of the d̃i
j ’s, which are then used to build a model of the form:

Xp =
∑

j

α
(p−1)
j d̃

(p−1)
j + αp

j d̃
p
j + α

(p+1)
j d̃

(p+1)
j

wherej = 1, . . . , 8 corresponding to the 8 resolution levels. This model is then used

to predict each of theX2, . . . , X255 from the corresponding series of processed wavelet

coefficients. Note that predictions are only made for traces with neighbouring traces, that

is no predictions are produced for theX1 andX256 traces.

3.6.1 Original Dataset

Figure 3.15 shows the reconstruction of the acoustic impedance, using the recorded traces,

based on this neighbour modelling method. Comparing this to Figure 3.9(a), it can be seen

that a similar ‘bump’ can be observed after the true acoustic impedance returns to its lower
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value. However, comparing the average mean squared error of the reconstructions using

both methods, the neighbouring traces method performs better, with an AMSE of 3.49

compared to that of 2.34 for the sole trace method.

Figure 3.16 shows the reconstruction of the Acoustic impedance, using the deconvolved

data estimates for the reflectivity coefficients, based on this neighbour modelling method.

This reconstruction appears to be similar to that using only one trace (Figure 3.9(b)) but

again the neighbouring traces method reduces the AMSE of the reconstruction from 2.34

to 2.11.

Figure 3.15: Neighbouring Traces reconstruction using recorded traces, (a) representative

reconstruction, (b) image reconstruction.

3.6.2 Alternative Dataset

Figure 3.17 shows the reconstruction of the Acoustic impedance, using the recorded

traces, based on this neighbour modelling method. Figure 3.18 shows the reconstruction

of the Acoustic impedance, using the deconvolved data estimates for the reflectivity

coefficients, based on this neighbour modelling method. The reconstructions using both

the data and the deconvolved reflectivity coefficients appear closer to the underlying truth
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Figure 3.16: Neighbouring Traces reconstruction using deconvolved reflectivity

coefficients, (a) representative reconstruction, (b) image reconstruction.

for this dataset. However, the model using the deconvolved version of the data performs

slightly better in terms of the AMSE of the reconstruction, but with less percentage

improvement than in the original case. The overall AMSE is also reduced, suggesting

that when there is a changing structure in the rock decomposition, using the neighbours

in the modelling improves the overall fit.

Model data Original Dataset Alternative Dataset

Reflectivity coefficients 2.11 1.16

Recorded trace 3.49 1.80

No neighbours reflectivity 2.34 3.08

Table 3.3: Average mean squared error of the reconstructions using the nearest

neighbours.



Chapter 3. Modelling Seismic Data 53

Figure 3.17: Neighbouring Traces reconstruction using recorded traces - alternative

dataset, (a) representative reconstruction, (b) image reconstruction.

3.7 Conclusions and further work

Modelling using transformed wavelet coefficients can provide an insight into the

underlying frequency structure when used to model acoustic impedance in differing rock

types. The drawback to this modelling method is that it requires some instance of the true

acoustic impedance to be known in order to train the model.

Convolution, which occurs in a standard reflection seismic setup, can mask some of the

frequency structure contained in the data. However, deconvolution seems to restore some

of these properties and is robust to the actual frequency of the deconvolution filter.

Using neighbouring traces in order to train the wavelet models on more explanatory

variables increases the accuracy of the reconstruction. This improvement is reproduced

during replication of the data simulation, suggesting that this is not due to over fitting.

Some of the reconstructions of the original dataset have demonstrated a ‘bump’

downstream of the feature. It may be of interest to analyse the data ‘backward’ to see

whether the bump appears in both cases. In this case improvements maybe observed if
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Figure 3.18: Neighbouring Traces reconstruction using deconvolved reflectivity

coefficients - alternative dataset, (a) representative reconstruction, (b) image

reconstruction.

analysis in both direction was undertaken and the average used for prediction.

Various methods exist in the literature for the analysis of seismic data, from spectral

methods (Chakraborty and Okaya, 1995) to fuzzy clustering (Peijie et al., 2006).

However, the applications vary and there is no direct comparison of the performance of

the techniques developed to these existing methodologies.
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Chapter 4

Tomographic Data Modelling

4.1 Introduction to tomography

Electrical tomography techniques provide a cheap and non-invasive approach to the

study of static and dynamic processes. Such techniques are widely used in geophysical,

industrial and medical investigations. The key common feature of all tomographic

techniques is that measurements are taken outside or on the boundary of a region with

the aim of describing what is happening within the region. In industrial applications

of electrical tomography, multiple voltages are recorded between electrodes attached to

the boundary of, for example, a pipe. The most usual first step of the analysis is then

to reconstruct the conductivity distribution within the pipe. The most commonly used

approaches to reconstruction are based on domain discretization, for example using the

finite-element method, leading to ill-posed inverse problems. Usually, such problems

are ill posed because there are multiple solutions and the solutions do not depend

continuously on the observed data. Stable solution then requires regularization. Even

if reliable reconstruction is possible it only provides an image representing the conditions

within the pipe. Although this is useful for process visualisation, for the automatic control

such an image is at best unnecessary, and will require further post-processing to allow
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control parameters to be obtained.

There is a growing sentiment (Stitt and James, 2003) that in a field application the

ambitions may be far more limited than in the research environment. That is simple

questions such as “is there or is there not a problem?” are more important than obtaining

high quality flow and phase patterns within the vessel. Also, that the aim should be

to reveal process behaviour in process terms rather than industrial process tomography

terms (Hoyle, 2004). One interpretation of these suggestions is that control parameter

estimation, rather than process visualization, is the more appropriate output of a data

analysis in many real situations. In particular, there is a need for sensing systems,

modelling and algorithms that are simple, fast and can operate largely unsupervised.

4.1.1 Flow pattern terminology

When two different components are flowing through a pipe, the simplest model of the flow

assumes that the minor component is distributed uniformly within the main component.

However, this will not always be the case and different flow patterns will produce different

expected tomography measurements. Thus to identify any desired anomalies in the flow,

the flow pattern must be considered.

Non-uniform flow patterns may occur in flows consisting of any combination of liquid,

solid or gas. For illustrative purposes, the flow of a mixture of gas and liquid is considered.

Such situations have a high density difference between the two components and are

readily observed in industry.

To describe the flow pattern, it must be acknowledged that there are many possibilities

due to the surface tension effects. In practice, the flow type is often classified into one of

various ‘flow regimes’ which provide a qualitative and subjective description of the flow

pattern.

The typical flow regimes, shown in Figure 4.1, for a vertical pipe are:
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• bubble flow. This is where the gas bubbles are dispersed throughout the liquid.

• slug flow. This occurs when the bubbles coalesce and become large so that they are

almost as wide as the pipe.

• churn flow. As the velocity of slug flow bubbles increases, they start to break down.

This creates an unstable regime with both wide and small bubbles.

• annular flow. The liquid flows on the walls of the pipe and the gas flows,with small

liquid droplets, in the centre.

Figure 4.1: A visual representation of some typical flow regimes.

4.1.2 Experimental setup

Consider the flow of a gas through a liquid in a section of vertical pipe. The gas enters at

the bottom of the section of pipe under pressure and travels rapidly up the length of the
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pipe. The gas fraction and bubble size are controlled by the inlet size and by the input

pressure. To control process efficiency it is important to monitor the flow regime, and to

adjust the input parameters accordingly. In the following simulation study, bubble, churn

and an intermediate flow between these will be considered. It is assumed that the gas has

conductivity 1Ωm and the liquid conductivity 2Ωm. The key part of the simulation is to

generate spatial patterns for the bubbles that evolve temporally. These will in turn define

the conductivity distributions.

In electrical tomography, for given conductivity distributions the boundary voltages are

found using Maxwell’s equations, and appropriate boundary conditions. This is the

forward or direct problem. The forward problem is solved numerically using the finite-

element method (FEM). For examples of FEM-based approaches see West et al. (2003,

2004).

The data simulation scheme used later in this chapter is motivated by the widely used

‘reference protocol’ for an eight-electrode electrical tomography system. This is when

the electrodes are equally spaced in a ring around a cylindrical pipe. In this protocol

a fixed current is passed between a common reference electrode and each of the other

electrodes in turn, hence producing seven current patterns. For each current pattern an

induced potential field is created within the pipe which depends on the current pattern, and

upon the conductivity distribution within the pipe. This potential field is probed by taking

multiple voltage readings between the reference electrode and each of the other electrodes.

For each current pattern seven voltages are recorded leading to 49 measurements at each

time point. Further, the process is allowed to evolve for 256 time points. Once noise-free

voltages are obtained uncorrelated Gaussian noise is added to yield the simulated dataset.

Hence the full dataset forms 7-by-7 electrode-pair time series of length 256.
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4.1.3 Local frequency properties of recorded data

The signals from each of the flow regimes exhibited extremely different behaviour, which

can be explained in terms of the frequency of the change in the measurements. The bubble

flow with its small pockets of gas in liquid produced more rapidly varying measurements

than the churn flow, with the intermediate flow lying somewhere in between (see Figure

4.2). It was anticipated that this difference in the traces would be detectable at the various

resolution levels of the wavelet decomposition (Figure 4.3), which contains information

about the detail of the signals at differing scales.

Figure 4.2: Sample simulated series from each of the flow regimes.

Looking at the plots of the non-decimated transforms (Figure 4.3) of the measurement

data, it can be seen that at the finest resolution level, there is a lot of activity for the

bubble flow and considerably less for the churn flow. Any fine scale activity in the churn

flow seems to correspond to the appearance of large bubbles. Looking at the coarse scale

activity, it can be seen that most of the activity of the churn flow occurs here, with much

less activity from the bubble flow.

This indicates a difference in the high frequency activity of the signals which may be

easily detectable using the wavelet transform.
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Figure 4.3: Non-decimated wavelet decomposition of the corresponding time series from

Figure 4.2.

4.2 Data simulation

4.2.1 Method

The simulation of the recorded voltages is possible as, if the resistivity of the pipe

contents is assumed, then boundary voltages can be calculated through the solution

of Maxwell’s equations. In practice this is done numerically, using the finite element

method. The problem is well posed and voltages can be obtained at least to the accuracy

of measurements.

In the direct problem, the resistivity distributionρ is specified. It is sometimes more

convenient to make use of the conductivityσ = 1/ρ. An assumption in the simulation

scheme is that resistivity is constant across pixels. The electric-field potential is required

at points of the domain boundary from which potential differences (voltages)U ∈ RM

can be calculated.

This is a well-studied and supported mathematical problem relating the unknown

conductivity distribution and the observed voltage measurements. If the conductivity
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distribution is given then voltages on the boundary can be found using Maxwell’s

equations, and appropriate boundary conditions. In practice this is usually done

numerically, using the finite element method (FEM) (see Vauhkonen et al. (2001) for

details).

4.2.2 Some mathematical background

Within a domain, Maxwell’s equations can be condensed to the form

∇(σ∇φ) = 0

for the conductivity vectorσ.

The boundary of the domain will comprise of electrodesEk(k = 1, . . . , 8), leading to the

following boundary conditions (Cheng et al., 1989).(
φ+ ζkσ

∂φ

∂n

)∣∣∣∣
Ek

= Uk k = 1, 2, . . . , K∫
Ek

σ
∂φ

∂n
dS = Ik k = 1, 2, . . . , K

σ
∂φ

∂n

∣∣∣∣
∂Ω\

SK
k=1 Ek

= 0

Within the area being considered Maxwell’s equations can be used to produce the

following elliptic partial differential equation relating the spatial conductivity distribution

σ to the electrical potential,φ (give a reference)

∇ · (σ∇φ) = 0. (4.1)

On the boundary, where the electrodes are located, there are additional boundary

conditions:(
φ+ ζσ

∂φ

∂n

)∣∣∣∣
Ek

= Uk,

∫
Ek

σ
∂φ

∂n
dS = Ik, k = 1, 2, · · ·K, (4.2)
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on the electrodes,Ek (k = 1, 2, . . . , K), and on the insulating boundaries between

electrodes

σ
∂φ

∂n
= 0, (4.3)

whereζ is the contact impedances of the electrodes,Uk denotes the potential on thekth

electrodeEk, Ik the current at electrodeEk andn is the outward unit normal of the

boundary. The boundary conditions simply say that the potential measured at an electrode

is higher than on the inside surface of the electrode due to the contact impedance, that the

total current integrated over the surface of the electrode is equal to the specified current,

and that no current passes across the insulating boundaries.

Here current passes between a reference electrode and each of the otherK electrodes in

turn, hence producingK − 1 current patterns and leading tom = (K − 1)2 measured

voltages. These voltage measurements are obtained by solving this system of equations.

It is not possible to obtain the voltages explicitly so instead the finite element method

(FEM) can be used and here calculation have been done in Matlab using the software

package EIDORS-2D (Vauhkonen et al. (2001)) based on code developed by West et al.

(2004).

To produce the data used here a conductivity distribution is generated by selecting bubble

locations randomly across the region. The number of bubbles and their sizes depend

on the regime, that is bubble or churn, within the study area. Bubble flow has many

small bubbles which pass the electrodes quickly. In contrast churn has fewer but larger

bubbles which occupy a larger cross-sectional area and take longer to pass the electrode

position. These conductivity distributions are passed to the Matlab code which then gives

calculated voltages, that is ones without measurement error. The data measurements are

then obtained from the calculated voltages by adding independent gaussian noise.
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4.2.3 Control parameters

There are several parameters that may be altered to simulate different flow regimes. These

will include:

• Gas volume — the proportion of gas to liquid was kept constant over time.

• Conductivity of the component fluids — this was set to be constant with a mixture

of two fluids with conductivity of1 Ωm and2 Ωm respectively.

• Bubble size — determines the nature of the flow. Many small bubbles or a few

larger bubbles would be examples of different types of flow.

• Length of bubble. This would reflect the likelihood of the bubble remaining in the

same place as time evolves.

4.3 Modelling using frequency characteristics

4.3.1 Introduction

The idea is to use the coefficients{djk} of the non-decimated wavelet transform in

the model building process. The reason for this is that different frequency properties

will manifest themselves as coefficients of increased magnitude at different resolution

levels. For example, high frequency characteristics will mean a lot of activity at the finer

resolution levels, while low frequency characteristics will be represented at coarser levels.

One of the aims of the modelling process is to detect changes in flow regimes and for this

reason, Haar wavelets were used. Longer filters will incorporate information over longer

time windows in the coefficients and may affect the model’s ability to detect the flow

regime change points.
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Initially for the tomography data, a combination of bubble and churn flows are considered

(Section 4.3.3). The nature of the data suggests a logistic regression model will be

appropriate. A more challenging problem is given by data having some characteristics

of both churn and bubble flow (called the intermediate flow) being considered. For these

data, a multinomial logistic regression model was appropriate (Section 4.3.5).

In both modelling approaches, working with the raw coefficients gave poor results in

terms of flow regime prediction and so atransfer function(Section 3.4) was incorporated

into the modelling process, which is illustrated in Figure 4.4.

Figure 4.4: Modelling process.

The wavelet decomposition plots (Figure 4.3) show that the pattern of the wavelet

coefficients is different at each resolution level for each flow regime. The fitted model

will then aim to relate this different activity to the individual flow types.
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4.3.2 Transfer function choice

The coefficients require some pre-processing in order to exploit the desired properties

of the data. This is achieved by applying atransfer functionto the wavelet coefficients

before the model building stage.

In this problem there are 49 sets of wavelet coefficients at each time point, all representing

slightly different regions of the pipe cross section. As the aim of the model will be to

predict flow regime in the pipe at any given time, it would be sensible to combine the 49

coefficients in some sense due to the symmetry within the simulated data. Also, since

we are interested in the level of activity (or frequency of the recorded signal) at each

time point, it can be argued that the magnitude of the wavelet coefficients is what we are

really interested in. This will avoid the possibility that large negative and large positive

coefficients could be represented by a number close to zero after the averaging step. It is

suggested the combining by taking the average of the absolute values of the 49 coefficients

at each resolution level will give a reasonable measure.

If the wavelet coefficients of theith electrode pair signal are represented by{di
jk}, where

i = 1, . . . , 49, and {d∗i
jk
∗} represents the thresholded coefficients, then theactivity

measures{ajk} used in the model building stage are defined as

No thresholding

ajk =
1

49

∑
i

|di
jk| (4.4)

With thresholding

ajk =
1

49

∑
i

|di
jk

∗| (4.5)

wherej = 0, . . . , J − 1, for J = log2(n) andk = 1, . . . , n− 1, wheren is the number of

time points observed.

The thresholding method used here was the universal threshold of Donoho and Johnstone

(1994). The aim was to see if thresholding could give any improvement in the model



Chapter 4. Tomographic Data Modelling 66

predictions. Further refinements could be to consider different thresholding policies to

optimise the model performance.

Other possible activity measures

There are several other ways in which the coefficients could be transformed to obtain

an activity measure. One possibility is using the coefficient of variation, which is a

normalised measure of dispersion and in this setting could be found over the 49 detail

coefficients at each resolution level and location, again resulting in an 8 dimensional

vector measure for each time point. Letsd(.) denote the standard deviation andµ(.)

denote the mean, then the coefficient of variation,cvar, is defined ascvar = sd/µ. An

alternative activity measure,ηjk, could then be calculated as

ηjk =
sd(d1

jk, . . . , d
4
jk9)

µ(d1
jk, . . . , d

4
jk9)

.

Another similar possibility is the coefficient of dispersion, which is defined as the

maximum absolute deviation divided by the median. This would result in an alternative

activity measure,κjk, which could be defined as

κjk =
1

49

∑
i

∣∣∣∣∣di
jk −median(di

jk)

median(di
jk)

∣∣∣∣∣ .
4.3.3 Logistic modelling

Since the response variable is dichotomous, as two extreme flow regimes are being

considered, logistic regression is used. The form of the model is

log

(
p

1− p

)
= β0 + β1X1 + · · ·+ βkXl (4.6)

wherep is the probability that the response is bubble flow, and hence1−p the probability

that the response is churn flow. The quantitiesX1, X2, . . . , Xl are the independent



Chapter 4. Tomographic Data Modelling 67

predictor variables and the parametersβ1, β2, . . . , βl, the regression coefficients, which

have to be estimated from the data. The aim of building such a model is that given

an observed signal, a prediction can be obtained from the transformed electrode-pair

readings, giving the probability that the observed flow is from either a bubble or churn

type flow regime. The logistic regression modelling idea extends to categorical variables

with more than two values, using a multinomial approach. This methodology would allow

the classification into more categories of flow regime (as in Section 4.3.5).

For training the logistic regression model, a dataset of 256 time points of churn flow,

followed by 256 time points of bubble flow was used. Uncorrelated Gaussian noise,

with constant standard deviation, was added to the signal. The non-decimated wavelet

transform of the observed measurements, using the Haar wavelet, was found. The

calculations were performed using the WaveThresh package (Nason, 2005) for the

statistical programming environment R (R Development Core Team, 2007). For each

electrode pair this produced nine time series of length 512, each representing the signal at

differing frequencies.

At each time point, the activity measure of the wavelet coefficients was found, either

before thresholding (equation 4.4) or after thresholding (equation 4.5), for each resolution

level and time point. As the actual flow regime was known, this data could then be used

to build a logistic regression model. In the model build the calculated activity measures

aj = (aj1, . . . , ajk or aj
∗ = (a∗j1, . . . , a

∗
jk) take the role of theX1, . . . , Xl in equation 4.6,

with l = 1, . . . , J .

The model was used to predict flow regime in a set of independently generated flow

patterns. This consisted of 168 time points of bubble flow, followed by 256 time points of

churn flow, followed by 88 time points of bubble, with added Gaussian white noise with

the same standard deviation as in the training dataset. We emphasise that the structure

of the test dataset was different to that of the training dataset. The purpose of this was

to demonstrate that the model predictions were not seriously affected by the structure of
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the underlying dataset. The predictions generated by the model are probabilities of the

time point being in bubble type flow. If these predicted probabilities were greater than or

equal to 0.5, the model was regarded as predicting bubble flow, otherwise the prediction

was churn flow. The correct classification rates (i.e. the percentage of time points which

are classified correctly) for the models built using both thresholded and non-thresholded

activity measures are shown in Figure 4.5.

Figure 4.5: Correct classification rates for the logistic model for two regime model using

thresholded, non-thresholded coefficients compared to a linear discriminant method based

on the wavelet coefficients.

The error bands shown are±2 standard errors of the prediction rate over 100 replicates at

each noise level.
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The noise standard deviation is related to the signal to noise ratio by the formula

SNR =
signal standard deviation
noise standard deviation

.

The thresholded wavelet coefficients work better for noise levels below those

corresponding to a SNR of 1. In this case the thresholded version is greatly superior,

with the predictions being much more clearly separated into bubble and churn regimes.

Beyond this the non-thresholded coefficients perform better, as the SNR decreases. The

reason for this is that at low noise levels, thresholding is able to denoise the coefficients,

whilst at higher noise levels, the signal will be swamped by noise and so the thresholding

process will also damage the signal component.

For automated use of this procedure, it would be valuable to be able to determine from

the data whether we are in a ’low noise’ (high SNR) or ’high noise’ (low SNR) situation.

We could then use the thresholded or non-thresholded approach accordingly. Since the

wavelet thresholding procedure involves estimation of the noise standard deviation, and

the thresholded signal estimate can be used to estimate the signal standard deviation, this

should be a feasible approach to producing an adaptive monitoring procedure.

4.3.4 Discriminant Analysis

In order to benchmark the performance of the model built in section 4.3.3, the alternative

method of discriminant analysis was used to predict flow regime from the activity

measures.

Discriminant analysis is an alternative to logistic regression, which has some prerequisite

assumptions (independent variables need to be normally distributed, linearly related, or

have equal within-group variances). However, discriminant analysis is preferred when the

assumptions of linear regression are met since it has more statistical power than logistic

regression.
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Here the setup is that we have two known groups and each new observation must belong

to either of these reference groups. The way discriminant analysis works is to assign the

observation to the nearest group based on some distance measure. In this example, the

Mahalanobis distance is used. Letx̄i denote the reference group means, withi ∈ (1, 2).

In this situation, the distance measure of an observed pointu from groupi,D2(i) is given

by:

D2(i) = (u− x̄i)
′W−1(u− x̄i)

, whereW is the within groups variance of the two reference groups. This measure

allows the two clusters of points to be assigned with some allowance for the within cluster

variance. See Gnanadesikan (1997) for more details about discriminant analysis.

The activity measure used in the logistic regression modelling in the previous section

resulted in a nine dimensional response for each time point, each number representing

activity at a different frequency. It was anticipated that these activity vectors could be

analysed using the statistical method of linear discriminant analysis (see for example

Manly, 2005), which aims to map objects into one of several groups by means of their

features and measurements. The training dataset from Section 4.3.3 was decomposed

using the Daubechies Least Asymmetric (8) wavelet to generate activity measures as

described above. A linear discriminant rule was then trained on these activity measures;

this rule was then used to classify each time point in the test dataset to either bubble or

churn flow.

Initially for the logistic regression models, Haar wavelets were used. This was motivated

by their short support and therefore increased ability to detect high frequency activity.

However, when using discriminant analysis, this basis performed poorly. It appeared

that this was a result of the low correlation between the detail coefficients, which are

then used in estimating the covariance matrix in order to establish a distance metric

for the discriminant analysis. For this reason, a longer filter was opted for and so the

Least Asymmetric with 8 vanishing moments was used. The longer filter means the



Chapter 4. Tomographic Data Modelling 71

correlations are more stable and hence less prone to erratic behaviour due to a few outlying

coefficients. This also suggests that a discriminant approach may be more sensitive to the

choice of wavelet.

4.3.5 Multinomial logistic regression

We now consider data with three types of flow regime. The bubble and churn regimes

from the previous section and an intermediate flow which lies somewhere between the

two in terms of activity frequency. A multinomial logit model is fitted here as there are 3

response categories, that is bubble (state 1), churn (state 2) and intermediate (state 3). The

modelling process used in R to fit a multinomial logit employs a neural network approach

to estimate the probabilitiespkl that thekth observation is from statel, using the activity

measures{ajk} as predictor variables (Venables and Ripley, 2002). To ensure that the

resulting probabilities sum to 1, one category is set as the baseline (here chosen to be

state 1), so thatpk1 = 1−
∑3

l=2 pkl and then we have

pkl =
exp(aT

k βl)

1 + exp(aT
k β2) + exp(aT

k β3)
, l = 1, 2, 3; k = 0, . . . , n− 1.

whereak = (a0k, . . . , a(J−1)k) and theβ’s are vector valued regression coefficients.

Further details of the multinomial model and the fitting algorithms used can be found

in Faraway (2005).

A dataset composing of approximately equal proportions of the three flow regimes was

used and white noise was added to the signal, representing measurement error. The non-

decimated wavelet transform of the observed measurements, using the Haar wavelet, was

found. For each electrode pair this produced nine activity level time series each of length

512, each representing the signal at differing frequencies. As the actual flow regime was

known, this data could then be used to build a multinomial regression model. This model
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was used to predict flow regime in a set of independently generated flow patterns, with

similar proportions of each flow regime to the training data.

4.3.6 Correct classification rates

Figure 4.6 shows the correct classification rates for the models built using both

thresholded and non-thresholded activity measures, averaged over 100 replications. Also

shown are approximate point-wise 95% confidence intervals calculated using the standard

errors from the replication.

Figure 4.6: The correct classification rates for the model predicting three flow regimes,

both with and without thresholding.

For all noise standard deviations below 0.07, it can be seen that the thresholded version

outperforms the model without thresholding. Here, the performance of each method

is approximately constant. The correct classification rate for the thresholded logistic
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regression was approximately 93% for all noise standard deviations below 0.07. A

standard deviation of 0.07 corresponds to a signal to noise ratio of 1; i.e. the “strength”

of the signal and noise are roughly equal. For larger noise standard deviations the

performance of the method with thresholding degrades, but the non-thresholded method

appears to have a slower decrease in success rate.

4.3.7 Misclassification

The misclassification matrix resulting from the model is shown in Table 4.1. It can be

seen the model successfully classifies at least 88% of all data points regardless of what

flow regime it is actually from. This also shows that the main source of classification

error is in classifying bubble flow as intermediate flow, which seems reasonable due to

the similarity of the recorded data observed in Figure 4.2.
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Figure 4.7: Some exploratory plots of the five flow regimes.
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True Flow Regime

bubble churn intermediate

Predicted bubble 0.88 0.00 0.04

Flow churn 0.04 0.99 0.00

Regime intermediate 0.08 0.01 0.96

Table 4.1: Matrix of the correct cross-classification rates between the three flow regimes

for a thresholded model with the added white noise standard deviation equal to 0.05.
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4.4 Extending to more simulated datasets

4.4.1 Introduction

As in Section 4.3.5, it was possible to generate further datasets by varying the input

parameters of bubble size and bubble length and considering more intermediate values

between the bubble and churn extremes. This was done to obtain three further

intermediate datasets (A, B and C). The relation to the original ‘bubble’ and ‘churn’ data

was assumed to be unknown. A plot of an example of each of the five flow regimes used

and the corresponding wavelet decomposition plots are shown in Figure 4.7. It was of

interest to investigate how similar the three intermediate datasets were to the original. It

was thought that the technique of multidimensional scaling would prove useful for this

purpose.

4.4.2 Multidimensional scaling

Multidimensional scaling is defined as a collection of methods with ‘the goal of

detecting meaningful underlying dimensions that allow the researcher to explain observed

similarities or dissimilarities between the investigated objects’ (StatSoft, Inc., 2007).

Given a set ofn points in Euclideanp-space it is possible to compute the distance

between any pair of points and can obtain ann × n distance matrix or dissimilarity

matrix (D). Multidimensional scaling answers the question of whether when given an

n × n symmetrical matrix (∆ = δij) of dissimilarities, can a configuration of points be

found in Euclideanp-space (p open to choice) such that the calculated distance matrix

(D) reasonably matches the given dissimilarity matrix (∆).

Figure 4.8 shows how different multidimensional scaling techniques separate the flow

regimes. It can be seen that there is no clear separation of the regimes using these
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True Flow Regime

Bubble A B C Churn

Bubble 100% 47% 17% 39% 4%

Predicted A 47% 100% 40% 39% 5%

Flow B 17% 40% 100% 49% 14%

Regime C 39% 39% 49% 100% 23%

Churn 4% 5% 14% 23% 100%

Table 4.2: Similarity matrix (thresholded) of the five simulated datasets.

techniques.

4.4.3 Investigating the data using logistic regression

For a measure of similarity between each of the 5 simulated datasets, each pairwise

combination was analysed in a similar fashion to the bubble and churn datasets in Section

4.3.3. This produced a correct classification probability for each pairwise combination of

datasets, which was then used as a measure of similarity.

The similarity matrix obtained for the thresholded model was found and is shown in Table

4.2. The similarity for the non-thresholded models is also shown in Table 4.3.

These similarities will be used later (Section 4.5) in assessing how well a model performs

dependant upon how well it classified flow into ‘similar’ datasets.

Comparing Tables 4.2 and 4.3 shows that when the underlying data has been thresholded,

the similarity of each of the flow regimes increases. This is intuitive since the differences

between some of the higher frequency regimes may have been observable at finer

resolution levels, information which may be removed by thresholding. It can be seen

that regime A is most similar to bubble flow. For the thresholded version, regime C has
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True Flow Regime

Bubble A B C Churn

Bubble 100% 37% 7% 3% 7%

Predicted A 37% 100% 27% 5% 3%

Flow B 7% 27% 100% 36% 32%

Regime C 3% 5% 36% 100% 16%

Churn 7% 3% 32% 16% 100%

Table 4.3: Similarity matrix (not thresholded) of the five simulated datasets.

relatively high similarities to all of the other regimes, suggesting that this flow combines

characteristics of both bubble and churn flows. Regime B is most like regime C, but also

has similarities to churn flow. This may mean that differentiating between B and C will

be difficult.

If we consider the dissimilarity matrices, derived from Tables 4.2 and 4.3 using the

relationshipdissimilarity = 100% - similarity, as distance matrices, multidimensional

scaling can be used to obtain a visual representation of the similarities of the flow regimes.

Figure 4.9 shows the result of classical scaling, although Kruskal and Sammon methods

gave similar results.

From Figure 4.9 it can be seen that for the non-thresholded models, the first dimension

separates the flows into two groups, bubble with A and the churn with B and C. The

second scaling dimension then separates A from bubble and B and C from churn, but the

separation between B and C in this second dimension is not as great. For the thresholded

version, flows B and C are very similar in the first dimension.
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Figure 4.8: Multidimensional scaling of the recorded data. (a) and (b) shows plots of the

1st, 2nd and 3rd principal components, (c) shows the first two dimensions using Sammon

mapping and (d) shows the first two dimensions using Kruskal mapping.
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Figure 4.9: Using Multidimensional scaling to separate the flow regimes.
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4.4.4 Alternative use of MDS to separate flow regimes

An alternative measure of distance between the flow regimes could be considered. This

time, the activity measures were found using equation 4.4 for each of the test datasets.

This produced 256 time points represented at each of 8 resolution levels for each flow

regime. The mean of the activity level

āk =
1∑
j

∑
j

ajk

was then found at each time point. Each flow regime then represented by an 8-vector.

The reason for using the mean was that the flow regime will be represented over all 256

time points and so a typical activity level might help to identify differences between flow

regimes in terms of the activity level representation.

The Euclidean distance between the 8-vectors was found and used in Kruskal’s non-metric

scaling method (Cox and Cox, 2001) to map the points into 4 dimensions. Kruskal’s

scaling method minimises the ‘stress’ of the configuration,S, given by:

S =

(∑
j<k(θ(ajk)− âjk)

2∑
j<k a

2
jk

) 1
2

. This resulted in a solution which was more tightly clustered and a representation of the

fitted configuration is shown in Figure 4.10.

4.5 Further multinomial examples

It was also possible to fit a multinomial model to a dataset consisting of a compilation of

four or five of the flow regimes. The purpose of this was to check for model consistency

and explore how well the modelling technique would perform when the test data are more

similar in terms of their frequency characteristics.
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Figure 4.10: Kruskal scaling applied to the activity level measures. Key: A — Bubble, B

— Churn, C — Flow A, D — Flow B, E — Flow C.

It can be seen from Figure 4.7 that the intermediate flows A, B and C are more visually

similar than the two extremes of bubble and churn flow. This can also be seen from

the multidimensional scaling approach in Figure 4.9. To test the performance of the

method, first a 4 level response multinomial model was fitted to a regime consisting of a

combination of the bubble, churn, flow A and flow B. As a further test the method was

then tried on all 5 flow regimes.

The 4 flow example consisted of 256 time points of each flow in the build sample. The test

sample consisted again of 256 blocks, but with a alternative ordering of the flow regimes.

The 5 flow regime example consisted of 205 time points of each of the first four flows,

together with 204 time points of the final intermediate flow. This order was again changed



Chapter 4. Tomographic Data Modelling 83

True Flow Regime

Bubble Churn A B

Predicted Bubble 36% 13% 71% 6%

Flow Churn 4% 64% 15% 33%

Regime A 18% 13% 14% 6%

B 42% 11% 0% 55%

Table 4.4: Correct classification rates for the 4 flow regime model.

in the model test sample.

4.5.1 Results

Multinomial model with 4 response levels

As shown in Table 4.4, the model performed best on the lower frequency regimes, with a

Churn correct prediction rate of 64% and that of Flow B being 55%. As Flow B is most

similar to Churn, if classifying as either of these regimes is considered a partial success

then the classification rates increase to 75% and 88% respectively.

The worst correct classification was that of Flow A, which was chronically predicted to

be Bubble flow. However, it is clear from Figure 4.7 that these two regimes do share

similarities. A prediction rate of 85% is observed when considering whether Flow A was

classified as a high frequency flow regime. The model misclassified 64% of the bubble

flow as other flow types, yet most of the wrong predictions fell into the Flow A category.

The addition of a further flow regimes has, in this case, decreased the reliability of the

model. Despite this, the model is still able to classify on the broader scales of high or low

frequency regime.
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True Flow Regime

Bubble Churn A B C

Bubble 100% 5% 1% 28% 0%

Predicted Churn 0% 5% 0% 28% 100%

Flow A 0% 0% 28% 0% 0%

Regime B 0% 90% 70% 43% 0%

Churn 0% 0% 0% 0% 0%

Table 4.5: Correct classification rates for the 5 flow regime model.

Multinomial model with 5 response levels

Looking at Table 4.5, it is apparent that the modelling method breaks down further as one

more possible regime is added. The model predicts 100% of Bubble flow correctly, yet is

unstable for all of the other regimes. The modelling method seems unable to predict with

any reliability when 5 flows are considered.

4.6 Conclusions

Wavelets have been shown to be a useful tool in extracting information from time series

with changing frequencies. This chapter has identified some methods that can be used in

an electrical tomographic setting, where such frequency changes exist.

The transfer functionwas identified as an important step in the modelling process. This

encoded the desired characteristics of the data to allow interpretable models to be built.

Logistic and multinomial regression techniques can be used to predict flow regime, with

varying degrees of success. For distinguishing between up to 3 flow regimes the modelling

method performs well. When the demands of more regimes was introduced, the method
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was no longer able to accurately predict.

Various methods exist in the literature for the analysis of tomographic data, including

extended Kalman filtering (Ijaz et al., 2006) and the modified Newton Raphson

method (Williams and Xie, 1993). However, the applications vary and there is no

direct comparison of the performance of the techniques developed to these existing

methodologies.
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Chapter 5

Multiwavelet modelling approaches

5.1 Introduction

5.1.1 What are multiwavelets?

Scalar wavelets as described in Section 2.4 are based on one father wavelet or

scaling function. Wavelet families with more than one scaling function are known as

multiwavelets and Strang and Strela (1995) described several reasons why multiwavelets

offer advantages over their scalar counterparts. A scalar wavelet system cannot

combine symmetry, orthogonality and higher order approximation as is possible with a

multiwavelet system.

The theory of multiwavelets is based on the idea of multiresolution analysis (MRA),

similar to that of scalar wavelets (see Section 2.3). However, the basis forV0 is

generated by translates ofN scaling functionsφ1(t − k), . . . , φN(t − k). The vector

Φ(t) = [φ1(t), . . . , φN(t)]T , will satisfy a matrix dilation equation

Φ(t) =
∑

k

HkΦ(2t− k). (5.1)
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The coefficientsHk areN by N matrices. A similar relationship holds for the mother

waveletsψ1(t), . . . , ψN(t), which satisfy the matrix equation

Ψ(t) =
∑

k

GkΦ(2t− k). (5.2)

Again, here the coefficientsGk areN byN matrices.

Equations 5.1 and 5.2 are analogous to the dilation equations in the scalar setting. Strang

and Strela (1995) gives a discussion on how these relations can be reached by considering

wavelet theory as the ‘iterated limit of filter bank theory’.

5.1.2 Prefiltering

The input of a multiwavelet transform must be vector valued. To achieve this when

applying multiwavelets to scalar series, the input must initially be preprocessed using

a prefilter. There are a variety of prefilters in the literature designed to produce vector

inputs, allowing scalar series to be analysed using multiwavelet methods. Some examples

of commonly used prefilters are:

• Identity — this is when a seriesx1, . . . , xn is ‘stacked’ to create a series of vectors,

so for a 2 dimensional multiwavelet transform this series would become
 x1

x1

 , . . . ,
 xn

xn


.

• Repeated row— For this prefilter, the seriesxn would become
 x1

x2

 , . . . ,
 xn−1

xn


.

Strela et al. (1999) propose using a multiwavelet transform for images, where the input

series are then themselves 2-dimensional, removing the need for prefiltering.
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5.1.3 Filter choice

There are relatively few examples of the implementation of different multiwavelet filters

compared to scalar wavelet. These include the 2-dimensional Geronimo-Donovan-

Hardin-Massopust (GDHM) and Chui-Lian families and the 3-dimensional Donovan

family. Higher dimensional multiwavelets exist, but are difficult to obtain explicitly due

to the high dimensional orthogonality conditions.

In the case of a scalar input series, the choice of dimension for the multiwavelet family

and prefilter would be based on choice of support, symmetry or the number of vanishing

moments as in the scalar wavelet case.

Some of the properties motivating the choice of the GDHM wavelet filter will be discussed

in the next section.

5.1.4 Example of a multiwavelet system

One of the simplest multiwavelets bases is that constructed by Geronimo et al. (1996).

This consists of two scaling functionsφ1(t), φ2(t), together with two associated mother

waveletsψ1(t), ψ2(t), these are shown in Figure 5.1.

This filter has some properties which are not able to be combined in the case of scalar

wavelets, that is symmetry, orthogonality and second order approximation. It also has

short support, with each of the associated scaling functions having support[0, 2] and the

wavelets having support[0, 1] and [0, 2]. It can be seen in Figure 5.1 that both scaling

functions are symmetric, and the wavelets form a symmetric/antisymmetric pair.

The dilation and wavelet equations for this system have four coefficients:

Φ(t) =

 φ1(t)

φ2(t)


= H0Φ(2t) + H1Φ(2t− 1) + H2Φ(2t− 2) + H3Φ(2t− 3)
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Figure 5.1: The GDHM multiwavelet basis functions (a) and (b) are the two scaling

functions, with (c) and (d) being the two mother multiwavelets.
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Ψ(t) =

 ψ1(t)

ψ2(t)


= G0Φ(2t) + G1Φ(2t− 1) + G2Φ(2t− 2) + G3Φ(2t− 3)
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5.2 The decimated multiwavelet transform computation

The decimated multiwavelet transform can be performed in an analogous way to scalar

wavelets using matrix valued high and low pass filters,G = {Gk} andH = {Hk} , where

in the GDHM casek = 1, . . . , 4.

Consider a scalar sequence of length2J , x1, . . . , xn. Top obtain the wavelet

decomposition using the GHDM filter as described above, the series would find be

prefiltered to a sequence of 2-d vectors.

x1, . . . , xn
−−−−→
prefilter


 x1

x1

 , . . . ,
 xn

xn


The next step is to filter this sequence in a similar way to the scalar case using the high

and low pass filters,G andH respectively. The main difference here is that the filtering

step involves matrix multiplication of the vectors in the original sequence.

5.2.1 Example of the decimated MWT

For a dataset containing 4 vectors,cj with J = 2, the multiwavelet transform can be

computed as follows.
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Figure 5.2: Diagram to show how the first two levels of the decimated multiwavelet

decomposition would be found,↓ 2 represents the decimation step.

1. Take the initial dataset

c2 = {c2,0, c2,1, c2,2, c2,3}

=


 1

2

 ,
 3

4

 ,
 5

6

 ,
 7

8

 .

2. Find the first level detail coefficients by applying the high pass filterG to c2

d1 = G↓2c2

= {(G0c2,0 + G1c2,1 + G2c2,2 + G3c2,3), (G0c2,2 + G1c2,3 + G2c2,0 + G3c2,1)}

=


 −1.325483

−0.3514719

 ,
 −4.153911

−2.476955


3. The next level of scaling coefficients can be found be applying the low pass filter
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H.

c1 = H↓2c2

= {(H0c2,0 + H1c2,1 + H2c2,2 + H3c2,3), (H0c2,2 + H1c2,3 + H2c2,0 + H3c2,1)}

=


 3.297056

9.891169

 ,
 4.331371

7.159798


4. Apply the low pass filterH to obtain the finest level of scaling coefficients.

c0 = H↓2c1

= (H0c1,0 + H1c1,1 + H2c1,0 + H3c1,1)

=

 9.060387

8.500387


5. Again, the high pass filterG can be applied to obtain the finest level of multiwavelet

coefficients.

d0 = G↓2c1

= (G0c1,0 + G1c1,1 + G2c1,0 + G3c1,1)

=

 −1.625097

−4.662742


Then the DMWT ofc2 will be {d1,d0, c0}.

5.3 Non-decimated multi-wavelet transform

The non-decimated multiwavelet transform (NDMWT) can be computed in a similar

fashion to the decimated case. However, analogous to the scalar case (Section 2.8) the

high and low pass filters are padded with alternate zero matrices at each level. These

filters are then applied to the data, producing sequences of multiwavelet coefficients at

each level that are of the same length and dimension as the input series.
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Following on from the example in Section 5.2.1, the filters are padded at each level with

a (2× 2) zero matrix. The resulting wavelet coefficients are:

c0 =


 9.060387

8.500387

 ,
 12.470580

3.677645

 ,
 11.323128

5.300387

 ,
 7.007838

11.403128



d0 =


 −1.625097

−4.662742

 ,
 3.580589

−2.262742

 ,
 −0.8250967

4.6627417

 ,
 1.649218

2.262742


5.4 Modelling seismic data using multi-wavelets

5.4.1 Motivation

In Section 3.6 it was observed that incorporating neighbouring traces in the model build

improved the reconstruction of the underlying truth. By considering sets of neighbouring

traces at distinct points in time, it is possible to treat the data as a vector values series.

This can then be investigated using a multiwavelet transform to yield an alternative set

of wavelet coefficients, which could then be used to build a predictive model for the

underlying acoustic impedance.

5.4.2 How to use the wavelet coefficients

As illustrated in Section 5.2.1, the wavelet coefficients obtained from the multiwavelet

transform will themselves be vectors. This means that thetransfer function(Section 3.4)

will have to be altered to accommodate this.

In order to use the coefficients in the modelling approach, a few different transforms of

the coefficients will be explored. For ap dimensional multiwavelet transform, giving
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coefficients of the formdjk = (d1
jk, . . . , d

p
jk)

T, some possible ways to incorporate these

into a modelling framework would be:

• Modulus — use||djk|| =
(
(d1

jk)
2 + · · ·+ (dp

jk)
2
) 1

2 .

• Modulus-argument representation The set of angles,{θ1, . . . , θp−1}, which

define the vector could be used alongside the modulus to obtain a different

representation of the coefficients.

• Splitting — consider each of the series{d1
jk}, . . . , {d

p
jk} separately.

• Scaling the coefficients— the observed coefficients will have different variances

in each component direction. It is possible to map these vector valued coefficients,

djk, into a scalar,θjk, taking account of these differing variances. This mapping

will be of the form

θjk = dT
jkV

−1
j djk

whereVj is the resolution level covariance matrix, robustly estimated from the

observed coefficients (Huber, 1981). This measure is also the Mahalanobis distance

of the pointdjk from the origin. Barber and Nason (2004) use this sort of measure

in the conext of complex wavelets.

5.4.3 Model framework

As the setup of the original dataset was that of adjacent data readings, no prefilter will be

used, instead the observed traces will be grouped up into 2 or 3 adjacent traces, depending

on the dimension of the filter used.

To model the underlying acoustic impedance trace, a linear regression approach will

be used as in Section 3.3.1. When the idea of introducing neighbouring traces was

introduced, one trace from either side was considered. This will be reproduced here,
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using the 3 dimensional Donovan Wavelet, described in Donovan et al. (1996). Several

different ways of incorporating the multiwavelet coefficients into the modelling process

will be explored.

5.4.4 Multiwavelet coefficients

As with the scalar wavelet transform, the coefficients will give a decomposition of the

underlying signal in both time and frequency. In order to identify properties of the

coefficients which might explain characteristics of the underlying signal, it will be useful

to look at the coefficients after the various transforms have been applied.

Split

Figure 5.3 shows the multiwavelet decomposition of the data, using both the GDHM

and Donovan filters. Each graph shows one dimension of the wavelet coefficients at each

resolution level. For both filters, it can be seen that there is increased activity in resolution

levels 3 and 4 in the central region of higher acoustic impedance. At the finest level, it

appears as though more activity is observed outside this region, corresponding to the lower

acoustic impedance level.

Modulus-argument representation

The multiwavelet decomposition of the data using both filters can again be seen in Figure

5.4. This time the left most graph shows the modulus of the coefficient. The following

graphs show a representation of the angles of the vector, transformed to show their

difference from a zero angle to allow comparison. The modulus-argument representation

makes it difficult to pick out any regions of interest. This suggests that this transform of

the coefficients is masking the properties which we are looking to extract.
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Scaled

Robustly estimating the covariance matrix and transforming thedjk to θjk’s gives a

scalar representation of the coefficients, which is shown in Figure 5.5. The scaled

coefficients show clumps of activity, yet these do not line up with where one would expect/

This again suggests that this transform will not be suitable for exploiting the frequency

characteristics.
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(a) Geronimo

(b) Donovan

Figure 5.3: Split multiwavelet coefficients
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(a) Geronimo

(b) Donovan

Figure 5.4: Modulus-argument representation of the multiwavelet coefficients
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(a) Geronimo (b) Donovan

Figure 5.5: Scaled multiwavelet coefficients
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5.4.5 Results

The different wavelet filters are compared based on how well they can be used in the

seismic modelling examples used in Chapter 3. Here the transformed wavelet coefficients

are used to build a linear regression model of the true acoustic impedance based on

a known trace. The model is then ised to predict the underlying acoustic impedance

distribution based on the transformed wavelet coefficients of similar recorded traces.

There are two test datasets and for each, the MSE of the reconstruction using the various

coefficient transform schemes. The choice of transfer function was investigated in each

case and again, a running median approach was preferred and a window of 15 was used.

Original dataset

Table 5.1 shows the mean squared error of the reconstructions. This shows that by far the

best performing method is a combination of the GDHM filter and splitting the coefficients.

For all the other proposed methods, the reconstruction MSE is greater than in the scalar

wavelet models of Chapter 3.

Alternative dataset

The modelling methods were then applied to the alternative dataset. The best performance

was again from the split coefficients, the reconstruction can be seen in Figure 5.7. The

MSE of the reconstruction in this case was 1.14 for the GDHM filter and 3.82 for the

Donovan filter. The GDHM performance here is marginally better than the scalar wavelet

neighbour model, which had an MSE of 1.16.
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(a) Geronimo

(b) Donovan

Figure 5.6: (a) Representative reconstruction and (b) Mean image reconstruction of

acoustic impedance using the split coefficients
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(a) Geronimo

(b) Donovan

Figure 5.7: (a) Representative reconstruction and (b) Mean image reconstruction of

acoustic impedance of alternative dataset using the split coefficients
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Wavelet Type Coefficient Transform Prediction MSE

Geronimo

Split 0.67

Modulus 8.88

Modulus-argument 4.05

Scaled 9.92

Donovan

Split 9.57

Modulus 11.31

Modulus-argument 9.42

Scaled 16.01

Table 5.1: Reconstruction MSE for the original dataset models.

5.5 Modelling tomographic data

5.5.1 Motivation

It was proposed in Section 5.4 that multiwavelet transforms may offer some improvement

on scalar wavelets and this was in someway supported by the improvement in the

reconstruction MSE in Section 5.4.5. The aim is to now explore whether using a

multiwavelet transform the application setting of Chapter 4 can offer any improvement.

5.5.2 Model framework

The modelling process described in Section 4.3.5 was used to allow comparison to the

scalar wavelet case. In this experiment, the bubble and churn extremes were compared

to one intermediate flow regime and a multinomial model used to predict flow regimes

depending upon the activity measures.

In the tomography datasets, there were 49 series observed over time. In order to allow
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a multiwavelet approach to be used without the need for prefiltering, these series will be

grouped into groups of 2 or 3 depending on the dimension of the filter used. In order to

incorporate all of the series, and as 49 is neither a multiple of 2 nor 3, the set of series was

randomly sampled to provide a set of series with the correct dimension. This should not

impact on the validity of the method as each of the series were recorded from the same

setup of flow regimes types.

5.5.3 Calculating activity measures

The wavelet coefficients obtained will now vary in dimension and in number depending

on the filter used. The activity measures will be calculated using the different methods

for incorporating the coefficients into the modelling process as described in Section 5.4.2.

Let p = ceiling(49/m), wherem is the dimension of the filter used andceiling is a

function which rounds up to the nearest integer.

Split coefficientsThe result of the MWT will givep vector coefficients at resolution level,

j = 1, . . . , J and locationk. The mean of each component of the coefficients was taken

to give a vector valued activity measure. Letdi be theith component of a vector, then

ajk
i =

1

p

p∑
x=1

djk
x.

These are then used in the model build, meaning that there are nowp × J explanatory

variables.

Modulus

The modulus,rjk, of each multiwavelet coefficient was found and the activity measure

was taken to be the mean of these moduli at each resolution level and location over thep

coefficients.

Scaled
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True Flow Regime

bubble churn intermediate

Predicted bubble 0.85 0.12 0.19

Flow churn 0.04 0.81 0.05

Regime intermediate 0.08 0.07 0.76

Table 5.2: Matrix of the correct cross-classification rates between the three flow regimes

using the GDHM filter (split coefficients) with added white noise standard deviation equal

to 0.05.

Let the set of scaled coefficients be denoted by{θ1
jk, . . . , θ

p
jk}. Then the mean at each

resolution and location of the set of scaled coefficients can be used to represent the activity

measure

ajk =
1

p

p∑
x=1

θx
jk.

5.5.4 Results

The best performance was obtained by using the split coefficient transform. The activity

measures for the modulus and scaled versions of the multiwavelet coefficients were

unstable and the resulting models performed poorly. For this reason, only the correct

classification rates using the split coefficients using the GDHM and Donovan filter are

reported in Tables 5.2 and 5.3 respectively. Figure 5.8 shows the correct classifiaction

rates for the GDHM and Donovan filters. This shows that the GDHM filter performs

better, yet both curves decrease steadily as the noise standard deviation increases.
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True Flow Regime

bubble churn intermediate

Predicted bubble 0.67 0.08 0.19

Flow churn 0.10 0.80 0.07

Regime intermediate 0.23 0.12 0.74

Table 5.3: Matrix of the correct cross-classification rates between the three flow regimes

using the Donovan filter (split coefficients) with added white noise standard deviation

equal to 0.05.

5.6 Multiwavelet thresholding

5.6.1 Introduction

In Chapter 4, thresholding was shown to increase the correct classification rate when the

amplitude of the noise was less than the signal present in the test data. It was therefore

proposed that a multiwavelet thresholding technique may improve the classification

results.

Downie and Silverman (1998) introduced the concept of thresholding in a multiwavelet

setting. They showed that for anL−dimensional wavelet basis, a transform of the

coefficients of pure noise would have aχ2
L distribution. A threshold for the transformed

coefficients can then be determined from this distribution.

The transform of the multiwavelet coefficient used in the thresholding rule isθ2
jk =

DT
jkV

−1
j Djk, whereDjk areL-vector coefficients. As mentioned above, it has been shown

that when considering the multiwavelet transform of pure noise,θ2
jk ∼ χ2

L. Downie and

Silverman (1998) give a multivariate universal threshold, which is used later. This has the

form:

λ2
n = 2 log(n) + (L− 2) log log(n).
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Figure 5.8: Correct classification rates of models built using the split coefficients.

The estimation of the covariance matrixVj will then determine the orientation of the

ellipse shown in Figure 5.9.

Hard multiwavelet thresholding

Looking at Figure 5.9, hard thresholding would mean that all coefficients outside of the

ellipse are maintained, whilst all those inside are shrunk to zero.

Djk
∗ =

 0 if θjk < λ

Djk if θjk ≥ λ
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Figure 5.9: Diagram to show how a two dimensional wavelet coefficient would be

transformed by thresholding.

Soft multiwavelet thresholding

For soft thresholding, all coefficients inside the ellipse are still shrunk to zero. However, in

this case all the coefficients outside the ellipse have their modulus reduced by an amount

equal to the radius of the ellipse along the coefficient vector. In the two dimensional case,

this would mean that the pointb would be mapped to the pointb∗.

Djk
∗ =

 0 if θjk < λ

Djk
(θ2

jk−λ2)

θ2
jk

if θjk ≥ λ

5.6.2 Application to tomographic classification

The multinomial modelling process described earlier in this Chapter was used again

to allow comparison between cases. The GDHM filter was used this time, since this

performed better in the non-thresholded simulations. The thresholding methods were

applied to the multiwavelet coefficients obtained from the MWT, before calculating the
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True Flow Regime

bubble churn intermediate

Predicted bubble 0.38 0.24 0.30

Flow churn 0.41 0.31 0.43

Regime intermediate 0.21 0.45 0.27

Table 5.4: Correct cross-classification rates using the hard thresholded split coefficient

and the GDHM filter with added white noise standard deviation equal to 0.05.

True Flow Regime

bubble churn intermediate

Predicted bubble 0.22 0.26 0.33

Flow churn 0.21 0.35 0.39

Regime intermediate 0.39 0.12 0.28

Table 5.5: Correct cross-classification rates between the flow regimes using the soft

thresholded split coefficients and the GDHM filter with added white noise standard

deviation equal to 0.05.

activity measures. The correct classification rates of the different transfer functions show

that thresholding has less affect on the prediction rates than in the scalar case.

The reason for this poor performance could be related to the way in which the multiple

series are used. Downie and Silverman (1998) noted that multiwavelet thresholding gives

poor results when the identity prefilter is used. The problem is that if a signal component

is present at a particular time-frequency it may be represented in one element of the

coefficient vector . This means that noise in the other elements will not be removed since

the thresholding technique takes account of the whole vector. As the series considered

here are highly correlated with each other, a similar issue may arise.

The Thresholded model performed much worse than the non-thresholded version in terms
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of being able to correctly classify the flow regimes. This can be seen by comparing Tables

5.4 and 5.5 to the Table 5.2 in the previous section.

5.7 Conclusions

It was hoped that the multidimensional frequency-time decomposition offered by the

multiwavelet transform would improve on the frequency modelling methods used in

Chapters 3 and 4. However, the application to these two modelling scenarios have resulted

in varying degrees of success.

For the seismic modelling, this new approach was able to reduce the mean squared error

of the acoustic impedance reconstruction by naturally incorporating neighbouring traces

into the model. The MSE was reduced to 0.67 from a minimum of 1.11 using scalar

wavelets. The way in which the multiwavelet coefficients are incorporated into the model

was an important factor in determining the success. Only the split coefficient method,

using the GDHM filter resulted in an improvement.

In the tomographic modelling attempt, all methods performed less successfully than the

scalar counterpart. Again, the GDHM filter performed better than the Donovan filter. This

could be due to the symmetric/antisymmetric property, which the Donovan filter does not

possess. The way in which the activity measures were calculated meant that some of the

model were unstable, classifying no better than random.

This instability with regard to the way the multiwavelet coefficients are transformed would

be interesting to investigate if further time were available.

In addition, the implementation of higher dimensional multiwavelet filters could prove to

be more successful on higher dimensional datasets, as in the tomographic example.
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Chapter 6

Conclusions and further work

The main theme of this thesis has been to consider the wavelet transform as a method of

exploiting frequency characteristics that occur in some naturally occurring processes. In

particular, we have looked at situations were the processes involve multiple observed

series and have attempted to combine these observations in the process of building

predictive models.

In Chapter 3, we considered the modelling of a seismic dataset. Using a non-decimated

wavelet transformation to exploit the frequency characteristics of the data proved useful

in building a predictive model. It was found that transforming the wavelet coefficients

using atransfer function which exploited these frequency characteristics improved the

reconstructive ability of the models.

It would be interesting to investigate the power of these methods on a real seismic study.

However, as an initial known truth is required to build models in the way proposed, such

datasets are hard to acquire.

In Chapter 4 we investigated how the localised time-frequency representation achieved

by using the wavelet coefficients could be used to classify tomographic flow regimes.

The introduction of the transfer function in the application allowed multiple series to be
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combined to explain the frequency characteristics across all of the series. This proved

a useful measure in predicting flow regimes using logistic and multinomial regression

methods.

Chapter 5 looked at the application of multiwavelet bases to frequency modelling. To

achieve this the non-decimated version of the multiwavelet transform was used with two

and three dimensional bases. This allowed multiple series to be combined during the

wavelet decomposition. This technique was used in the same applications as in Chapters

3 and 4 to see if this improved on the scalar wavelet efforts. In the seismic case, a two

dimensional filter was able to reduce the reconstruction error over scalar wavelets. When

using the method on tomographic data the best results were obtained from splitting the

coefficients, however this offered no improvement over the scalar wavelet model.

Further investigation could be done into more dimensions of the multiwavelet approach.

In the seismic application, the dimension of filter was chosen so as to include

neighbouring traces in the modelling process. However in the tomography application,

the bases were chosen due to their dimension. It would be of interest to extend the ‘bank’

of multiwavelet filters, as in the tomography setting a seven dimensional filter would have

been of interest, due to the seven sensors in the experimental setup.

In this thesis, primarily the non-decimated wavelet and non-decimated multiwavelet

transforms have been considered. There are several other transforms, such as the wavelet

packet transform, the locally stationary wavelet transform and the complex wavelet

transform. These could be investigated for modelling frequency characteristics in a

similar manner.

Another important application of wavelets is in denoising. We have not considered this

here as it was the underlying frequency property of the noise that we have aimed to

extract. Another angle of modelling data with these characteristics might be to extract

the noise using denoising methods and then model using the denoised dataset alongside

the extracted data.
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